2.设集合M={x|-2<x<3},P={x|x≤-1},那么“x∈M或x∈P”是“x∈M∩P”的( )
A. | 必要不充分条件 | B. | 充分不必要条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
1.已知tan($\frac{π}{4}$+α)=3,则tanα的值是( )
A. | 2 | B. | $\frac{1}{2}$ | C. | -1 | D. | -3 |
19.若实数x,y满足不等式组$\left\{\begin{array}{l}x+3y-3≤0\\ x-y+1≥0\\ y≥-1\end{array}\right.$则z=2x+y的取值范围是( )
A. | [-3,11] | B. | [-3,13] | C. | [-5,13] | D. | [-5,11] |
17.2014年7月18日15时,超强台风“威马逊”登陆海南省.据统计,本次台风造成全省直接经济损失119.52亿元.适逢暑假,小明调查住在自己小区的50户居民由于台风造成的经济损失,作出如下频率分布直方图(如图):
表一:
(Ⅰ)根据频率分布直方图估计小区平均每户居民的平均损失;
(Ⅱ)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50居民捐款情况如表1,在表1表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关?
(Ⅲ)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求连续3天内,有2天李师傅比张师傅早到小区的概率.
附:临界值表参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.
表一:
经济损失4000元以下 | 经济损失4000元以上 | 合计 | |
捐款超过500元 | 30 | 9 | 39 |
捐款低于500元 | 5 | 6 | 11 |
合计 | 35 | 15 | 50 |
(Ⅱ)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50居民捐款情况如表1,在表1表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关?
(Ⅲ)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求连续3天内,有2天李师傅比张师傅早到小区的概率.
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
16.方程|y|-1=$\sqrt{1-(x-1)^{2}}$表示的曲线是( )
0 248472 248480 248486 248490 248496 248498 248502 248508 248510 248516 248522 248526 248528 248532 248538 248540 248546 248550 248552 248556 248558 248562 248564 248566 248567 248568 248570 248571 248572 248574 248576 248580 248582 248586 248588 248592 248598 248600 248606 248610 248612 248616 248622 248628 248630 248636 248640 248642 248648 248652 248658 248666 266669
A. | 两个半圆 | B. | 两个圆 | C. | 抛物线 | D. | 一个圆 |