17.下列命题中,真命题的是( )
A. | ?x0∈R,${e^{x_0}}$<0 | |
B. | 函数$f(x)={x^2}-{log_{\frac{1}{2}}}$x的零点个数为2 | |
C. | 若p∨q为真命题,则p∧q也为真命题 | |
D. | 命题“若m>0,则方程x2+x-m=0有实数根”的逆否命题为:“若方程x2+x-m=0无实数根,则m≤0” |
12.已知圆x2+y2+2x-4y+1=0关于直线2ax-by+2=0(a,b∈R)对称,则ab的取值范围是( )
A. | (-∞,$\frac{1}{4}$] | B. | (0,$\frac{1}{4}$) | C. | (-$\frac{1}{4}$,0) | D. | [-$\frac{1}{4}$,+∞) |
11.电视传媒公司为了解某地区观众对某体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成下面的2×2列联表,并据此资料你是否能够在犯错概率不超过0,05的前提下认为“体育迷”与性别有关?
(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).
附:K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$.
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成下面的2×2列联表,并据此资料你是否能够在犯错概率不超过0,05的前提下认为“体育迷”与性别有关?
非体育迷 | 体育迷 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
附:K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$.
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
9.命题:在三角形中,顶点与对边中点连线所得三线段交于一点,且分线段长度比为2:1,类比可得在四面体中,顶点与所对面的( )连线所得四线段交于一点,且分线段比为( )
A. | 重心 3:1 | B. | 垂心 3:1 | C. | 内心 2:1 | D. | 外心 2:1 |
8.已知$\frac{5π}{2}<x<3π$,化简$\sqrt{\frac{1-sin(\frac{3}{2}π-x)}{2}}$的结果为( )
0 248342 248350 248356 248360 248366 248368 248372 248378 248380 248386 248392 248396 248398 248402 248408 248410 248416 248420 248422 248426 248428 248432 248434 248436 248437 248438 248440 248441 248442 248444 248446 248450 248452 248456 248458 248462 248468 248470 248476 248480 248482 248486 248492 248498 248500 248506 248510 248512 248518 248522 248528 248536 266669
A. | -cos$\frac{x}{2}$ | B. | cos$\frac{x}{2}$ | C. | $±cos\frac{x}{2}$ | D. | cos${\;}^{2}\frac{x}{2}$ |