题目内容

11.电视传媒公司为了解某地区观众对某体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:

将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成下面的2×2列联表,并据此资料你是否能够在犯错概率不超过0,05的前提下认为“体育迷”与性别有关?
非体育迷体育迷合计
1055
合计
(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).
附:K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$.
P(K2≥k)0.050.01
k3.8416.635

分析 (1)根据所给的频率分布直方图得出数据列出列联表,再代入公式计算得出K2,与3.841比较即可得出结论;
(2)由题意,用频率代替概率可得出从观众中抽取到一名“体育迷”的概率是$\frac{1}{4}$,由于X~B(3,$\frac{1}{4}$),从而给出分布列,再由公式计算出期望与方差即可.

解答 解:(1)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而2×2列联表如下:

非体育迷体育迷合计
301545
451055
合计7525100
将2×2列联表中的数据代入公式计算,得K2=$\frac{100}{33}$≈3.030.
因为3.030<3.841,所以我们不能能够在犯错概率不超过0,05的前提下认为“体育迷”与性别有关.
(2)由频率分布直方图知抽到“体育迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“体育迷”的概率$\frac{1}{4}$.
由题意知X~B(3,$\frac{1}{4}$),从而X的分布列为
X0123
P$\frac{27}{64}$$\frac{27}{64}$$\frac{9}{64}$$\frac{1}{64}$
E(X)=np=3×$\frac{1}{4}$=$\frac{3}{4}$.D(X)=np(1-p)=3×$\frac{1}{4}$×$\frac{3}{4}$=$\frac{9}{16}$.

点评 本题主要考查频率分布直方图的应用、独立性检验、随机变量的分布列、期望、方差计算,考查运用所学知识解决实际问题能力,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网