19.数列1×4,2×5,3×6,…,n(n+3),…则它的前n项和Sn=( )
A. | $\frac{1}{3}$n(n+1)(n+2) | B. | $\frac{1}{3}$n(n+1)(n+3) | C. | $\frac{1}{3}$n(n+1)(n+4) | D. | $\frac{1}{3}$n(n+1)(n+5) |
17.观察式子:1+$\frac{1}{{2}^{2}}$<$\frac{3}{2}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<$\frac{5}{3}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<$\frac{7}{4}$,…,则可归纳出式子为( )
A. | 1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…<$\frac{1}{2n-1}$ | B. | 1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…$\frac{1}{{n}^{2}}$<$\frac{1}{2n-1}$ | ||
C. | 1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…$\frac{1}{{n}^{2}}$<$\frac{2n-1}{n}$ | D. | 1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…$\frac{1}{{n}^{2}}$<$\frac{2n}{2n+1}$ |
15.因为对数函数y=logax是增函数(大前提),而是对数函数$y={log_{\frac{1}{3}}}x$(小前提),所以y=log${\;}_{\frac{1}{3}}$x是增函数(结论).这个推理过程中( )
A. | 大前提错误导致结论错误 | |
B. | 小前提错误导致结论错误 | |
C. | 推理形式错误导致结论错误 | |
D. | 大前提和小前提都错误导致结论错误 |
12.用秦九韶算法计算多项式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6,当x=-4时,v4的值为( )
0 247707 247715 247721 247725 247731 247733 247737 247743 247745 247751 247757 247761 247763 247767 247773 247775 247781 247785 247787 247791 247793 247797 247799 247801 247802 247803 247805 247806 247807 247809 247811 247815 247817 247821 247823 247827 247833 247835 247841 247845 247847 247851 247857 247863 247865 247871 247875 247877 247883 247887 247893 247901 266669
A. | -57 | B. | 220 | C. | -845 | D. | 3392 |