题目内容
17.观察式子:1+$\frac{1}{{2}^{2}}$<$\frac{3}{2}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<$\frac{5}{3}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<$\frac{7}{4}$,…,则可归纳出式子为( )A. | 1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…<$\frac{1}{2n-1}$ | B. | 1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…$\frac{1}{{n}^{2}}$<$\frac{1}{2n-1}$ | ||
C. | 1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…$\frac{1}{{n}^{2}}$<$\frac{2n-1}{n}$ | D. | 1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…$\frac{1}{{n}^{2}}$<$\frac{2n}{2n+1}$ |
分析 根据所给的几个不等式归纳出左边、右边的规律,根据此规律结合答案项可归纳出不等式.
解答 解:由题意知,:1+$\frac{1}{2^2}$<$\frac{3}{2}$,1+$\frac{1}{2^2}$+$\frac{1}{3^2}$<$\frac{5}{3}$,1+$\frac{1}{2^2}$+$\frac{1}{3^2}$+$\frac{1}{4^2}$<$\frac{7}{4}$,…,
观察可得:每个不等式的左边是正整数的倒数之和,且最后一项的分母是项数加1,
右边是分数,且分母是项数加1、分子是以3为首项、2 为公差的等差数列,
∴可归纳出不等式:$1+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+…+\frac{1}{{n}^{2}}<\frac{2n-1}{n}$(n≥2且n∈N*),
故选:C.
点评 本题考查归纳推理,难点是根据能够找出数之间的内在规律,考查观察、分析、归纳的能力,是基础题.
练习册系列答案
相关题目
5.已知过抛物线C:x2=2py(p>0)的焦点F的直线m交抛物线于点M、N,|MF|=2|NF|=3,则抛物线C的方程为( )
A. | x2=8y | B. | x2=2y | C. | x2=4y | D. | x2=2$\sqrt{2}$y |
12.用秦九韶算法计算多项式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6,当x=-4时,v4的值为( )
A. | -57 | B. | 220 | C. | -845 | D. | 3392 |
9.如图所示的是“概率”知识的( )
A. | 流程图 | B. | 结构图 | C. | 程序框图 | D. | 直方图 |
7.设集合A={x|x>1},集合$B=\{x|y=\sqrt{3-x}\}$,则A∩B=( )
A. | [0,+∞) | B. | (-∞,1) | C. | [1,+∞) | D. | (1,3] |