题目内容
13.已知曲线y=x2+2x-2在点M处的切线与x轴平行,则点M的坐标是(-1,-3).分析 设出M(m,n),求出导数,求得切线的斜率,由题意可得2m+2=0,解得m,进而得到n,即可得到切点坐标.
解答 解:y=x2+2x-2的导数为y′=2x+2,
设M(m,n),则在点M处的切线斜率为2m+2,
由于在点M处的切线与x轴平行,
则2m+2=0,解得m=-1,
n=1-2-2=-3,
即有M(-1,-3).
故答案为:(-1,-3).
点评 本题考查导数的运用:求切线的斜率,同时考查两直线平行的条件,正确求导是解题的关键.
练习册系列答案
相关题目
3.如图是函数y=f(x)的导函数y=f′(x)的图象,则下面判断正确的是( )
A. | 在区间(-2,1)内f(x)是增函数 | B. | 在(1,3)内f(x)是减函数 | ||
C. | 在(4,5)内f(x)是增函数 | D. | 在x=2时f(x)取到极小值 |
8.sin$\frac{20π}{3}$=( )
A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $-\frac{1}{2}$ | D. | $\frac{1}{2}$ |
2.某企业通过调查问卷(满分50分)的形式对本企业900名员工的工作满意度进行调查,并随机抽取了其中30名员工(16名女员工,14名男员工)的得分,如下表:
(1)根据以上数据,估计该企业得分大于45分的员工人数;
(2)现用计算器求得这30名员工的平均得分为40.5分,若规定大于平均得分为“满意”,否则为“不满意”,请完成下列表格:
(3)根据上述表中数据,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为该企业员工“性别”与“工作是否满意”有关?(参考数据请看15题中的表)
女 | 47 36 32 48 34 44 43 47 46 41 43 42 50 43 35 49 |
男 | 37 35 34 43 46 36 38 40 39 32 48 33 40 34 |
(2)现用计算器求得这30名员工的平均得分为40.5分,若规定大于平均得分为“满意”,否则为“不满意”,请完成下列表格:
“满意”的人数 | “不满意”人数 | 合计 | |
女 | 16 | ||
男 | 14 | ||
合计 | 30 |
3.函数y=2x3-3x2( )
A. | 在x=0处取得极大值0,但无极小值 | |
B. | 在x=1处取得极小值-1,但无极大值 | |
C. | 在x=0处取得极大值0,在x=1处取得极小值-1 | |
D. | 以上都不对 |