10.已知F1和F2分别是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的两个焦点,A和B是以O为圆心,以|OF1|为半径的圆与该双曲线左支的两个交点,且△F2AB是等边三角形,则该双曲线的离心率为( )
A. | $\frac{{\sqrt{3}+1}}{2}$ | B. | $\sqrt{3}-1$ | C. | $\sqrt{3}+1$ | D. | 2 |
6.执行如图所示的程序框图,则输出的a的值为( )
A. | 2 | B. | $\frac{1}{3}$ | C. | -$\frac{1}{2}$ | D. | -3 |
4.电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.
(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?
(2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2名,求至少有1名女性观众的概率.
附:K2=$\frac{{n{{({bc-ad})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?
非体育迷 | 体育迷 | 合计 | |
男 | |||
女 | |||
总计 |
附:K2=$\frac{{n{{({bc-ad})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
3.若x∈[0,+∞),则下列不等式恒成立的是( )
0 247674 247682 247688 247692 247698 247700 247704 247710 247712 247718 247724 247728 247730 247734 247740 247742 247748 247752 247754 247758 247760 247764 247766 247768 247769 247770 247772 247773 247774 247776 247778 247782 247784 247788 247790 247794 247800 247802 247808 247812 247814 247818 247824 247830 247832 247838 247842 247844 247850 247854 247860 247868 266669
A. | $\frac{1}{\sqrt{1+x}}$<1-$\frac{1}{2}$x+$\frac{1}{4}$x2 | B. | ln(1+x)≥x-$\frac{1}{8}$x2 | C. | ex≤1+x+x2 | D. | cosx≥1-$\frac{1}{2}$x2 |