ÌâÄ¿ÄÚÈÝ
4£®µçÊÓ´«Ã½¹«Ë¾ÎªÁ˽âijµØÇø¹ÛÖÚ¶ÔijÀàÌåÓý½ÚÄ¿µÄÊÕÊÓÇé¿ö£¬Ëæ»ú³éÈ¡ÁË100Ãû¹ÛÖÚ½øÐе÷²é£¬ÆäÖÐÅ®ÐÔÓÐ55Ãû£®ÏÂÃæÊǸù¾Ýµ÷²é½á¹û»æÖƵĹÛÖÚÈÕ¾ùÊÕ¿´¸ÃÌåÓý½ÚĿʱ¼äµÄƵÂÊ·Ö²¼Ö±·½Í¼£º½«ÈÕ¾ùÊÕ¿´¸ÃÌåÓý½ÚĿʱ¼ä²»µÍÓÚ40·ÖÖӵĹÛÖÚ³ÆΪ¡°ÌåÓýÃÔ¡±£¬ÒÑÖª¡°ÌåÓýÃÔ¡±ÖÐÓÐ10ÃûÅ®ÐÔ£®£¨1£©¸ù¾ÝÒÑÖªÌõ¼þÍê³ÉÏÂÃæµÄ2¡Á2ÁÐÁª±í£¬²¢¾Ý´Ë×ÊÁÏÄãÊÇ·ñÈÏΪ¡°ÌåÓýÃÔ¡±ÓëÐÔ±ðÓйأ¿
·ÇÌåÓýÃÔ | ÌåÓýÃÔ | ºÏ¼Æ | |
ÄÐ | |||
Å® | |||
×Ü¼Æ |
¸½£ºK2=$\frac{{n{{£¨{bc-ad}£©}^2}}}{{£¨{a+b}£©£¨{c+d}£©£¨{a+c}£©£¨{b+d}£©}}$
P£¨K2¡Ýk0£© | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
·ÖÎö £¨1£©ÓÉƵÂÊ·Ö²¼Ö±·½Í¼ÖпÉÖª£º³éÈ¡µÄ100Ãû¹ÛÖÚÖУ¬¡°ÌåÓýÃÔ¡±¹²ÓУ¨0.020+0.005£©¡Á10¡Á100=25Ãû£®¿ÉµÃ2¡Á2ÁÐÁª±í£¬½«2¡Á2ÁÐÁª±íÖеÄÊý¾Ý´úÈ빫ʽ¼ÆËã¿ÉµÃK2µÄ¹Û²âֵΪ£ºk¡Ö3.030£®ÓÉ¡°¶ÀÁ¢ÐÔ¼ìÑé»ù±¾ÔÀí¡±¼´¿ÉÅжϳö£»
£¨2£©ÓÉƵÂÊ·Ö²¼Ö±·½Í¼ÖпÉÖª£º¡°³¬¼¶ÌåÓýÃÔ¡±ÓÐ5Ãû£¬´Ó¶øÒ»ÇпÉÄܽá¹ûËù×é³ÉµÄ»ù±¾Ê¼þ¿Õ¼ä¦¸={£¨a1£¬a2£©£¬£¨a1£¬a3£©£¬£¨a2£¬a3£©£¬£¨a1£¬b1£©£¬£¨a1£¬b2£©£¬£¨a2£¬b1£©£¬£¨a2£¬b2£©£¬£¨a3£¬b1£©£¬£¨a3£¬b2£©£¬£¨b1£¬b2£©}£¬ÆäÖÐai£¨i=1£¬2£¬3£©±íʾÄÐÐÔ£¬bj£¨j=1£¬2£©±íʾŮÐÔ£®ÉèA±íʾʼþ¡°´Ó¡°³¬¼¶ÌåÓýÃÔ¡±ÖÐÈÎÒâÑ¡È¡2Ãû£¬ÖÁÉÙÓÐ1ÃûÅ®ÐÔ¹ÛÖÚ¡±£¬¿ÉµÃʼþA°üÀ¨7¸ö»ù±¾Ê¼þ£¬ÀûÓùŵä¸ÅÂʼÆË㹫ʽ¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©ÓÉƵÂÊ·Ö²¼Ö±·½Í¼ÖпÉÖª£º³éÈ¡µÄ100Ãû¹ÛÖÚÖУ¬¡°ÌåÓýÃÔ¡±¹²ÓУ¨0.020+0.005£©¡Á10¡Á100=25Ãû£®¿ÉµÃ2¡Á2ÁÐÁª±í£º
·ÇÌåÓýÃÔ | ÌåÓýÃÔ | ºÏ¼Æ | |
ÄÐ | 30 | 15 | 45 |
Å® | 45 | 10 | 55 |
×Ü¼Æ | 75 | 25 | 100 |
¡ß3.030£¼3.841£¬
¡àÎÒÃÇûÓÐÀíÓÉÈÏΪ¡°ÌåÓýÃÔ¡±ÓëÐÔ±ðÓйأ®
£¨2£©ÓÉƵÂÊ·Ö²¼Ö±·½Í¼ÖпÉÖª£º¡°³¬¼¶ÌåÓýÃÔ¡±ÓÐ5Ãû£¬´Ó¶øÒ»ÇпÉÄܽá¹ûËù×é³ÉµÄ»ù±¾Ê¼þ¿Õ¼ä¦¸={£¨a1£¬a2£©£¬£¨a1£¬a3£©£¬£¨a2£¬a3£©£¬£¨a1£¬b1£©£¬£¨a1£¬b2£©£¬£¨a2£¬b1£©£¬£¨a2£¬b2£©£¬£¨a3£¬b1£©£¬£¨a3£¬b2£©£¬£¨b1£¬b2£©}£¬ÆäÖÐai£¨i=1£¬2£¬3£©±íʾÄÐÐÔ£¬bj£¨j=1£¬2£©±íʾŮÐÔ£®
ÉèA±íʾʼþ¡°´Ó¡°³¬¼¶ÌåÓýÃÔ¡±ÖÐÈÎÒâÑ¡È¡2Ãû£¬ÖÁÉÙÓÐ1ÃûÅ®ÐÔ¹ÛÖÚ¡±£¬ÔòʼþA°üÀ¨7¸ö»ù±¾Ê¼þ£º£¨a1£¬b1£©£¬£¨a1£¬b2£©£¬£¨a2£¬b1£©£¬£¨a2£¬b2£©£¬£¨a3£¬b1£©£¬£¨a3£¬b2£©£¬£¨b1£¬b2£©£®
¡àP£¨A£©=$\frac{7}{10}$£®
µãÆÀ ±¾Ì⿼²éÁË¡°¶ÀÁ¢ÐÔ¼ìÑé»ù±¾ÔÀí¡±¡¢¹Åµä¸ÅÂʼÆË㹫ʽ¡¢ÆµÂÊ·Ö²¼Ö±·½Í¼¼°ÆäÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
A£® | 55£¬36 | B£® | 55.5£¬36.5 | C£® | 56.5£¬36.5 | D£® | 58£¬37 |
A£® | $£¨{\frac{lg2}{2}£¬\frac{lge}{e}}£©$ | B£® | $£¨{0£¬\frac{1}{e}}£©$ | C£® | $£¨{\frac{lg2}{2}£¬e}£©$ | D£® | $£¨{0£¬\frac{lg2}{2}}£©$ |
A£® | ${a_n}=n+\frac{1}{2^n}$ | B£® | ${a_n}=n•\frac{1}{2^n}$ | C£® | ${a_n}=n+\frac{1}{{{2^{n-1}}}}$ | D£® | ${a_n}=£¨{n-1}£©+\frac{1}{{{2^{n-1}}}}$ |