题目内容
9.如图,在△ABC中,C=$\frac{π}{2}$,A=$\frac{π}{3}$,过C作△ABC的外接圆的切线CD,BD⊥CD,BD与外接圆交于点E,若DE的长为2,则AC=10.分析 设AB=2r,利用直角△ABC的边角关系即可得出BC,利用弦切角定理可得∠BCD=∠A=60°.利用直角△BCD的边角关系即可得出CD,BD.再利用切割线定理可得CD2=DE•DB,即可求出AC.
解答 解:设AB=2r,则
在△ABC中,∠C=90°,∠A=60°,AB=2r,
∴BC=AB•sin60°=$\sqrt{3}$r.
∵CD是此圆的切线,∴∠BCD=∠A=60°.
在Rt△BCD中,CD=BC•cos60°=$\frac{\sqrt{3}}{2}$r,BD=BC•sin60°=$\frac{3}{2}$r.
由切割线定理可得CD2=DE•DB,
∴($\frac{\sqrt{3}}{2}$r)2=5•$\frac{3}{2}$r,解得r=10.
∴AB=20,AC=10
故答案为:10.
点评 熟练掌握直角三角形的边角关系、弦切角定理、切割线定理是解题的关键.
练习册系列答案
相关题目
4.电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.
(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?
(2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2名,求至少有1名女性观众的概率.
附:K2=$\frac{{n{{({bc-ad})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?
非体育迷 | 体育迷 | 合计 | |
男 | |||
女 | |||
总计 |
附:K2=$\frac{{n{{({bc-ad})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
1.平行四边形ABCD中,∠ABD=55°,∠BAD=85°,将△ABD绕BD旋转至与面BCD重合,
在旋转过程中(不包括起始位置和终止位置),有可能正确的是( )
在旋转过程中(不包括起始位置和终止位置),有可能正确的是( )
A. | AB∥CD | B. | AB⊥CD | C. | AD⊥BC | D. | AC⊥BD |
19.△ABC中,若A=60°,a=$\sqrt{3}$,则△ABC的外接圆半径等于( )
A. | $\frac{\sqrt{3}}{2}$ | B. | 1 | C. | $\sqrt{3}$ | D. | 2 |