17.山东某市2008年至2012年新建商品住宅每平方米的均价y
(单位:千元)的数据如表:
(Ⅰ)求y关于x的线性回归方程$\hat y=\hat b•x+\hat a$;
(Ⅱ)利用(Ⅰ)中的回归方程,分析从2008年到2012年该市新建商品住宅每平方米均价的变化情况,并预测该市2015年新建商品住宅每平方米的均价.
附:回归直线的斜率和截距的最小二乘估计公式分别为$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\bar x•\bar y}}}{{\sum_{i=1}^n{x_i^2-n{{\bar x}^2}}}}$,$\hat a=\bar y-\hat b•\bar x$.
(单位:千元)的数据如表:
年份 | 2008 | 2009 | 2010 | 2011 | 2012 |
年份序号x | 1 | 2 | 3 | 4 | 5 |
每平米均价y | 2.0 | 3.1 | 4.5 | 6.5 | 7.9 |
(Ⅱ)利用(Ⅰ)中的回归方程,分析从2008年到2012年该市新建商品住宅每平方米均价的变化情况,并预测该市2015年新建商品住宅每平方米的均价.
附:回归直线的斜率和截距的最小二乘估计公式分别为$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\bar x•\bar y}}}{{\sum_{i=1}^n{x_i^2-n{{\bar x}^2}}}}$,$\hat a=\bar y-\hat b•\bar x$.
14.一位母亲记录了她儿子3周岁到9周岁的身高,建立了她儿子身高y与年龄x的回归模型$\widehat{y}$=73.93+7.19x,她用这个模型预测她儿子10周岁时的身高,则下面的叙述正确的是( )
A. | 她儿子10周岁时的身高一定是145.83cm | |
B. | 她儿子10周岁时的身高在145.83cm以上 | |
C. | 她儿子10周岁时的身高在145.83cm左右 | |
D. | 她儿子10周岁时的身高在145.83cm以下 |
10.在半径为8cm的圆中,$\frac{5π}{3}$的圆心角所对的弧长( )
A. | $\frac{400π}{3}cm$ | B. | $\frac{20π}{3}cm$ | C. | $\frac{200π}{3}cm$ | D. | $\frac{40π}{3}cm$ |
9.cos(-15°)的值为( )
0 247335 247343 247349 247353 247359 247361 247365 247371 247373 247379 247385 247389 247391 247395 247401 247403 247409 247413 247415 247419 247421 247425 247427 247429 247430 247431 247433 247434 247435 247437 247439 247443 247445 247449 247451 247455 247461 247463 247469 247473 247475 247479 247485 247491 247493 247499 247503 247505 247511 247515 247521 247529 266669
A. | $\frac{{\sqrt{2}-\sqrt{6}}}{4}$ | B. | $\frac{{\sqrt{6}-\sqrt{2}}}{4}$ | C. | $\frac{{\sqrt{2}+\sqrt{6}}}{4}$ | D. | -$\frac{{\sqrt{2}+\sqrt{6}}}{4}$ |