17.定义:数列{an}对一切正整数n均满足$\frac{{a}_{n}+{a}_{n+2}}{2}$>an+1,称数列{an}为“凸数列”,一下关于“凸数列”的说法:
(1)等差数列{an}一定是凸数列
(2)首项a1>0,公比q>0且q≠1的等比数列{an}一定是凸数列
(3)若数列{an}为凸数列,则数列{an+1-an}是单调递增数列
(4)凸数列{an}为单调递增数列的充要条件是存在n0∈N*,使得a${\;}_{{n}_{0}+1}$>an,其中说法正确的是( )
(1)等差数列{an}一定是凸数列
(2)首项a1>0,公比q>0且q≠1的等比数列{an}一定是凸数列
(3)若数列{an}为凸数列,则数列{an+1-an}是单调递增数列
(4)凸数列{an}为单调递增数列的充要条件是存在n0∈N*,使得a${\;}_{{n}_{0}+1}$>an,其中说法正确的是( )
A. | (1)(2) | B. | (2)(3) | C. | (2)(4) | D. | (3)(4) |
15.函数f(x)=${log_{\frac{1}{2}}}$x-x+4的零点位于区间( )
A. | $(\frac{1}{2},1)$ | B. | (1,2) | C. | (2,3) | D. | (3,4) |
14.假设关于某设备的使用年限x和所支出的维修费用y(万元)有如下的统计资料:
若由资料知y对x呈线性相关关系.
(1)请画出上表数据的散点图;
(2)请根据最小二乘法求出线性回归方程$\widehat{y}$=bx+a的回归系数a,b;$b=\frac{\sum _{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum _{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}},a=\overline{y}-b\overline{x}$
(3)估计使用年限为10年时,维修费用是多少?
0 247299 247307 247313 247317 247323 247325 247329 247335 247337 247343 247349 247353 247355 247359 247365 247367 247373 247377 247379 247383 247385 247389 247391 247393 247394 247395 247397 247398 247399 247401 247403 247407 247409 247413 247415 247419 247425 247427 247433 247437 247439 247443 247449 247455 247457 247463 247467 247469 247475 247479 247485 247493 266669
使用年限x | 2 | 3 | 4 | 5 | 6 |
维修费用y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)请画出上表数据的散点图;
(2)请根据最小二乘法求出线性回归方程$\widehat{y}$=bx+a的回归系数a,b;$b=\frac{\sum _{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum _{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}},a=\overline{y}-b\overline{x}$
(3)估计使用年限为10年时,维修费用是多少?