1.(1)某企业人力资源部为了研究企业员工工作积极性和对待企业改革态度的关系,随机抽取了72名员工进行调查,所得的数据如表所示:
对于人力资源部的研究项目,根据上述数据你能得出什么结论?
(友情提示:当Χ2>3.841时,有95%的把握说事件A与B有关;当Χ2>6.635时,有99%的把握说事件A与B有关; 当Χ2<3.841时认为事件A与B无关.)
(2)高中数学必修3第三章内容是概率.概率包括事件与概率,古典概型,概率的应用.事件与概率又包括随机现象,事件与基本事件空间,频率与概率,概率的加法公式.请画出它们之间的知识结构图.
积极支持改革 | 不太支持改革 | 合 计 | |
工作积极 | 28 | 8 | 36 |
工作一般 | 16 | 20 | 36 |
合 计 | 44 | 28 | 72 |
(友情提示:当Χ2>3.841时,有95%的把握说事件A与B有关;当Χ2>6.635时,有99%的把握说事件A与B有关; 当Χ2<3.841时认为事件A与B无关.)
(2)高中数学必修3第三章内容是概率.概率包括事件与概率,古典概型,概率的应用.事件与概率又包括随机现象,事件与基本事件空间,频率与概率,概率的加法公式.请画出它们之间的知识结构图.
19.已知数列{an}是首项为1的等比数列,Sn是{an}的前n项和,且$\frac{S_4}{S_8}=\frac{1}{17}$,则数列{$\frac{1}{{a}_{n}}$}的前5项和为( )
A. | $\frac{31}{16}$或$\frac{11}{16}$ | B. | $\frac{11}{16}$或$\frac{21}{16}$ | C. | $\frac{11}{16}$ | D. | $\frac{31}{16}$ |
18.若f(x)=$\frac{lnx}{x}$,e<b<a,则( )
A. | f(a)>f(b) | B. | f(a)=f(b) | C. | f(a)<f(b) | D. | f(a)f(b)>1 |
17.设数列{an}是等差数列,Sn是{an}的前n项和,且S7>S8,S8=S9<S10,则下列结论错误的是( )
A. | d>0 | B. | a9=0 | ||
C. | S8,S9均为Sn的最小值 | D. | S11<S10 |
16.在△ABC中,B=$\frac{π}{6}$,c=150,b=50$\sqrt{3}$,则△ABC为( )
A. | 直角三角形 | B. | 等腰三角形或直角三角形 | ||
C. | 等边三角形 | D. | 等腰三角形 |
15.在等比数列{an}中,a1+a2=72,a3+a4=18,那么a4+a5=( )
A. | 6 | B. | 9 | C. | ±6 | D. | ±9 |
14.设A是△ABC的最小内角,则sinA+$\sqrt{3}$cosA的取值范围为( )
0 247136 247144 247150 247154 247160 247162 247166 247172 247174 247180 247186 247190 247192 247196 247202 247204 247210 247214 247216 247220 247222 247226 247228 247230 247231 247232 247234 247235 247236 247238 247240 247244 247246 247250 247252 247256 247262 247264 247270 247274 247276 247280 247286 247292 247294 247300 247304 247306 247312 247316 247322 247330 266669
A. | ($\sqrt{3}$,2] | B. | [$\sqrt{3}$,2] | C. | ($\sqrt{3}$,2) | D. | ($\frac{\sqrt{3}}{2}$,1] |