13.设a为实常数,y=f(x)是定义在R上的奇函数,当x>0时,f(x)=4x+$\frac{1}{x}$+3,则对于y=f(x)在x<0时,下列说法正确的是( )
A. | 有最大值7 | B. | 有最大值-7 | C. | 有最小值7 | D. | 有最小值-7 |
11.设等差数列{an}的前n项和为Sn,且满足S2014>0,S2015<0,对任意正整数n,都有|an|≥|ak|,则k的值为( )
A. | 1006 | B. | 1007 | C. | 1008 | D. | 1009 |
7.某地区有小学18所,中学12所,大学6所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.
(1)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,求抽取的2所学校均为小学的概率;
(2)若某小学被抽取,该小学五个年级近视眼率y的数据如下表:
根据前四个年级的数据,利用最小二乘法求y关于x的线性回归直线方程,并计算五年级近视眼率的估计值与实际值之间的差的绝对值.
(附:回归直线$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$的斜率和截距的最小二乘法估计公式分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)
0 246440 246448 246454 246458 246464 246466 246470 246476 246478 246484 246490 246494 246496 246500 246506 246508 246514 246518 246520 246524 246526 246530 246532 246534 246535 246536 246538 246539 246540 246542 246544 246548 246550 246554 246556 246560 246566 246568 246574 246578 246580 246584 246590 246596 246598 246604 246608 246610 246616 246620 246626 246634 266669
(1)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,求抽取的2所学校均为小学的概率;
(2)若某小学被抽取,该小学五个年级近视眼率y的数据如下表:
年级号x | 1 | 2 | 3 | 4 | 5 |
近视眼率y | 0.1 | 0.15 | 0.2 | 0.3 | 0.39 |
(附:回归直线$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$的斜率和截距的最小二乘法估计公式分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)