3.高三年级为放松紧张情绪更好地迎接高考,故进行足球射门比赛,现甲?乙两个班级各有5名编号为1,2,3,4,5的学生进行射门比赛,每人射10次,射中的次数统计如下表:
(1)从统计数据看,甲?乙两个班哪个班成绩更稳定(用数字特征说明);
(2)在本次比赛中,从两班中分别任选一个同学,比较两人的射中次数.求甲班同学射中次数高于乙班同学射中次数的概率.
学生 | 1号 | 2号 | 3号 | 4号 | 5号 |
甲班 | 6 | 5 | 7 | 9 | 8 |
乙班 | 4 | 8 | 9 | 7 | 7 |
(2)在本次比赛中,从两班中分别任选一个同学,比较两人的射中次数.求甲班同学射中次数高于乙班同学射中次数的概率.
18.定义:如果函数f(x)在[a,b]上存在x1,x2(a<x1<x2<b)满足$f'({x_1})=\frac{f(b)-f(a)}{b-a}$,$f'({x_2})=\frac{f(b)-f(a)}{b-a}$,则称函数f(x)是[a,b]上的“双中值函数”.已知函数f(x)=x3-x2+a是[0,a]上的“双中值函数”,则实数a的取值范围是( )
A. | $(\frac{1}{3},\frac{1}{2})$ | B. | ($\frac{3}{2},3$) | C. | ($\frac{1}{2}$,1) | D. | ($\frac{1}{3}$,1) |
17.命题${P}:Ex∈[-\frac{π}{6},\frac{π}{4}],2sin(2x+\frac{π}{6})-m=0$,命题q:Ex∈(0,+∞),x2-2mx+1<0,若 P∧(?q)为真命题,则实数犿的取值范围为( )
A. | [-2,1] | B. | [-1,1] | C. | [-1,1) | D. | (0,2] |
16.已知抛物线C:y2=4x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若$\overrightarrow{FP}=3\overrightarrow{FQ}$,则|QF|=( )
A. | $\frac{8}{3}$ | B. | $\frac{4}{3}$ | C. | 2 | D. | 1 |
15.已知集合$\left\{\begin{array}{l}\\(x,y)\end{array}\right.\left|{\left\{\begin{array}{l}2x+y-6≤0\\ x+y≥0\\ x-y≥0\end{array}\right.}\right.\left.,\right\}$表示的平面区域为Ω,若在区域Ω内任取一点P(x,y)则点
P(x,y)的坐标满足不等式x2+y2≤4的概率为( )
P(x,y)的坐标满足不等式x2+y2≤4的概率为( )
A. | $\frac{π}{3}$ | B. | $\frac{π}{12}$ | C. | $\frac{π}{24}$ | D. | $\frac{3π}{32}$ |
14.已知数列{an}为等差数列,前n项和为Sn,若${a_7}+{a_8}+{a_9}=\frac{π}{6}$,则cosS15的值为( )
0 246270 246278 246284 246288 246294 246296 246300 246306 246308 246314 246320 246324 246326 246330 246336 246338 246344 246348 246350 246354 246356 246360 246362 246364 246365 246366 246368 246369 246370 246372 246374 246378 246380 246384 246386 246390 246396 246398 246404 246408 246410 246414 246420 246426 246428 246434 246438 246440 246446 246450 246456 246464 266669
A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | -$\frac{{\sqrt{3}}}{2}$ |