题目内容

2.已知函数f(x)=cosx•sin($\frac{π}{6}$-x)
(1)求f(x)的单调减区间;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,若f(C)=-$\frac{1}{4}$,a=2,且△ABC的面积为2$\sqrt{3}$,求边长C的值.

分析 (1)运用两角和差的正弦和余弦公式,结合二倍角公式化简f(x),由余弦函数的单调减区间,解不等式即可得到所求减区间;
(2)由代入法和特殊角的函数值,可得C,再由三角形的面积公式和余弦定理,计算即可得到c.

解答 解:$f(x)=cosx(sin\frac{π}{6}cosx-sinxcos\frac{π}{6})=\frac{1}{2}{cos^2}x-\frac{{\sqrt{3}}}{4}sin2x$=$\frac{1+cos2x}{4}$-$\frac{\sqrt{3}}{4}$sin2x
=$\frac{1}{2}cos(2x+\frac{π}{3})+\frac{1}{4}$,
(1)由$2kπ≤2x+\frac{π}{3}≤2kπ+π(k∈z)$,解得kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,k∈Z,
即有f(x)的单调减区间为$[{kπ-\frac{π}{6},kπ+\frac{π}{3}}]$,k∈Z;
(2)$f(C)=\frac{1}{2}cos(2C+\frac{π}{3})+\frac{1}{4}=-\frac{1}{4}$,
∴$cos(2C+\frac{π}{3})=-1$,∴$C=\frac{π}{3}$.
∵${S_{△ABC}}=\frac{1}{2}absinC=\frac{{\sqrt{3}}}{4}ab=2\sqrt{3}$,∴ab=8,
∵a=2,∴b=4,
由余弦定理得c2=a2+b2-2abcosC=12,
∴$c=2\sqrt{3}$.

点评 本题考查三角形的余弦定理和面积公式的运用,同时考查三角函数的化简,注意运用二倍角公式和两角和差的余弦公式,以及余弦函数的图象和性质,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网