ÌâÄ¿ÄÚÈÝ
3£®¸ßÈýÄ꼶Ϊ·ÅËɽôÕÅÇéÐ÷¸üºÃµØӽӸ߿¼£¬¹Ê½øÐÐ×ãÇòÉäÃűÈÈü£¬ÏÖ¼×?ÒÒÁ½¸ö°à¼¶¸÷ÓÐ5Ãû±àºÅΪ1£¬2£¬3£¬4£¬5µÄѧÉú½øÐÐÉäÃűÈÈü£¬Ã¿ÈËÉä10´Î£¬ÉäÖеĴÎÊýͳ¼ÆÈçÏÂ±í£ºÑ§Éú | 1ºÅ | 2ºÅ | 3ºÅ | 4ºÅ | 5ºÅ |
¼×°à | 6 | 5 | 7 | 9 | 8 |
ÒÒ°à | 4 | 8 | 9 | 7 | 7 |
£¨2£©ÔÚ±¾´Î±ÈÈüÖУ¬´ÓÁ½°àÖзֱðÈÎÑ¡Ò»¸öͬѧ£¬±È½ÏÁ½È˵ÄÉäÖдÎÊý£®Çó¼×°àͬѧÉäÖдÎÊý¸ßÓÚÒÒ°àͬѧÉäÖдÎÊýµÄ¸ÅÂÊ£®
·ÖÎö £¨1£©¸ù¾ÝÁ½×éÊý¾ÝÇó³öÁ½×éÊý¾ÝµÄ·½²î£¬±È½Ï¿ÉµÃÄÄ×éѧÉú³É¼¨¸üÎȶ¨£»
£¨2£©·Ö±ð¼ÆËãÔڼס¢ÒÒÁ½°àÖи÷³é³öÒ»Ãûͬѧ¼°¼×°àͬѧÉäÖдÎÊý¶àÓÚÒÒ°àͬѧÉäÖдÎÊýµÄÈ¡·¨ÖÖÊý£¬´úÈë¹Åµä¸ÅÐ͸ÅÂʹ«Ê½£¬¿ÉµÃ´ð°¸
½â´ð ½â£º£¨1£©Á½¸ö°àÊý¾ÝµÄƽ¾ùÖµ¶¼Îª7£¬¡£¨1·Ö£©
¼×°àµÄ·½²î$s_1^2=\frac{{£¨6-7{£©^2}+£¨5-7{£©^2}+£¨7-7{£©^2}+£¨9-7{£©^2}+£¨8-7{£©^2}}}{5}=2$£¬
ÒÒ°àµÄ·½²î$s_2^2=\frac{{£¨4-7{£©^2}+£¨8-7{£©^2}+£¨9-7{£©^2}+£¨7-7{£©^2}+£¨7-7{£©^2}}}{5}=\frac{14}{5}$£¬
ÒòΪ$s_1^2£¼s_2^2$£¬¼×°àµÄ·½²î½ÏС£¬ËùÒÔ¼×°àµÄ³É¼¨±È½ÏÎȶ¨£®
£¨2£©£¨2£©¼×°à1µ½5ºÅ¼Ç×÷a£¬b£¬c£¬d£¬e£¬ÒÒ°à1µ½5ºÅ¼Ç×÷1£¬2£¬3£¬4£¬5£¬
´ÓÁ½°àÖзֱðÈÎÑ¡Ò»¸öͬѧ£¬µÃµ½µÄ»ù±¾Ñù±¾¿Õ¼äΪ
¦¸={a1£¬a2£¬a3£¬a4£¬a5£¬b1£¬b2£¬b3£¬b4£¬b5£¬c1£¬c2£¬c3£¬c4£¬c5£¬d1£¬d2£¬d3£¬d4£¬d5£¬e1£¬e2£¬e3£¬e4£¬e5}£¬
¹²25¸ö»ù±¾Ê¼þ×é³É£¬Õâ25¸öÊǵȿÉÄܵģ»
½«¡°¼×°àͬѧÉäÖдÎÊý¸ßÓÚÒÒ°àͬѧÉäÖдÎÊý¡±¼Ç×÷A£¬
ÔòA={a1£¬b1£¬c1£¬d1£¬d2£¬d4£¬e1£¬e4£¬e5}£¬AÓÉ10¸ö»ù±¾Ê¼þ£®
ËùÒÔ¼×°àͬѧÉäÖдÎÊý¸ßÓÚÒÒ°àͬѧÉäÖдÎÊýµÄ¸ÅÂÊΪ$\frac{10}{25}=\frac{2}{5}$£®
µãÆÀ ±¾Ì⿼²éÁË·½²îµÄ¼ÆË㣬¹Åµä¸ÅÐ͸ÅÂʼÆË㹫ʽ£¬ÕÆÎչŵä¸ÅÐ͸ÅÂʹ«Ê½£º¸ÅÂÊ=ËùÇóÇé¿öÊýÓë×ÜÇé¿öÊýÖ®±ÈÊǽâÌâµÄ¹Ø¼ü
A£® | ³ä·Ö²»±ØÒªÌõ¼þ | B£® | ±ØÒª²»³ä·ÖÌõ¼þ | ||
C£® | ³äÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÓÖ²»±ØÒªÌõ¼þ |
A£® | S10 | B£® | S11 | C£® | S20 | D£® | S21 |
A£® | µÚÒ»ÏóÏÞ | B£® | µÚ¶þÏóÏÞ | C£® | µÚÈýÏóÏÞ | D£® | µÚËÄÏóÏÞ |
A£® | $£¨\frac{1}{3}£¬\frac{1}{2}£©$ | B£® | £¨$\frac{3}{2}£¬3$£© | C£® | £¨$\frac{1}{2}$£¬1£© | D£® | £¨$\frac{1}{3}$£¬1£© |
A£® | $\sqrt{3}$ | B£® | 4 | C£® | $\sqrt{23}$ | D£® | 2$\sqrt{6}$ |
A£® | 32£¬63 | B£® | 64£¬63 | C£® | 63£¬32 | D£® | 63£¬64 |