题目内容
18.定义:如果函数f(x)在[a,b]上存在x1,x2(a<x1<x2<b)满足$f'({x_1})=\frac{f(b)-f(a)}{b-a}$,$f'({x_2})=\frac{f(b)-f(a)}{b-a}$,则称函数f(x)是[a,b]上的“双中值函数”.已知函数f(x)=x3-x2+a是[0,a]上的“双中值函数”,则实数a的取值范围是( )A. | $(\frac{1}{3},\frac{1}{2})$ | B. | ($\frac{3}{2},3$) | C. | ($\frac{1}{2}$,1) | D. | ($\frac{1}{3}$,1) |
分析 根据题目给出的定义可得f′(x1)=f′(x2)=$\frac{f(a)-f(0)}{a}$=a2-a,即方程3x2-2x=a2-a在区间(0,a)有两个解,利用二次函数的性质可知实数a的取值范围.
解答 解:由题意可知,∵f(x)=x3-x2+a,f′(x)=3x2-2x
在区间[0,a]存在x1,x2(a<x1<x2<b),
满足f′(x1)=f′(x2)=$\frac{f(a)-f(0)}{a}$=a2-a,
∵f(x)=x3-x2+a,
∴f′(x)=3x2-2x,
∴方程3x2-2x=a2-a在区间(0,a)有两个不相等的解.
令g(x)=3x2-2x-a2+a,(0<x<a)
则,$\left\{\begin{array}{l}{△=4-12(-{a}^{2}+a)>0}\\{g(0)=-{a}^{2}+a>0}\\{g(a)=2{a}^{2}-a>0}\\{0<\frac{1}{3}<a}\end{array}\right.$
解得;$\frac{1}{2}<a<1$.
∴实数a的取值范围是($\frac{1}{2}$,1)
故选:C
点评 本题主要考查了导数的几何意义,二次函数的性质与方程根的关系,属于中档题
练习册系列答案
相关题目
13.设f(x)=$\left\{\begin{array}{l}{x^t},x<2\\ 1o{g_t}({x^2}+7),x≥2\end{array}$,则$f(\sqrt{2})=4$,则f(3)=( )
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
3.高三年级为放松紧张情绪更好地迎接高考,故进行足球射门比赛,现甲?乙两个班级各有5名编号为1,2,3,4,5的学生进行射门比赛,每人射10次,射中的次数统计如下表:
(1)从统计数据看,甲?乙两个班哪个班成绩更稳定(用数字特征说明);
(2)在本次比赛中,从两班中分别任选一个同学,比较两人的射中次数.求甲班同学射中次数高于乙班同学射中次数的概率.
学生 | 1号 | 2号 | 3号 | 4号 | 5号 |
甲班 | 6 | 5 | 7 | 9 | 8 |
乙班 | 4 | 8 | 9 | 7 | 7 |
(2)在本次比赛中,从两班中分别任选一个同学,比较两人的射中次数.求甲班同学射中次数高于乙班同学射中次数的概率.