题目内容
设数列{an}的首项a1=1,前n项和Sn满足关系式:3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4…).
(1)求证: 数列{an}是等比数列;
(2)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=f()(n=2,3,4…),求数列{bn}的通项bn;
(3)求和: b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1.
(1)求证: 数列{an}是等比数列;
(2)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=f()(n=2,3,4…),求数列{bn}的通项bn;
(3)求和: b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1.
(1)证明略 (2) bn=1+(n-1)= (3) b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1- (2n2+3n)
(1)由S1=a1=1,S2=1+a2,得3t(1+a2)-(2t+3)=3t.
∴a2=.
又3tSn-(2t+3)Sn-1=3t, ①
3tSn-1-(2t+3)Sn-2=3t ②
①-②得3tan-(2t+3)an-1=0
∴,n=2,3,4…,
所以{an}是一个首项为1公比为的等比数列;
(2)由f(t)= =,得bn=f()=+bn-1.
可见{bn}是一个首项为1,公差为的等差数列.
于是bn=1+(n-1)=;
(3)由bn=,可知
{b2n-1}和{b2n}是首项分别为1和,公差均为的等差数列,
于是b2n=,
∴b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1
=b2(b1-b3)+b4(b3-b5)+…+b2n(b2n-1-b2n+1)
=- (b2+b4+…+b2n)=-·n(+)=- (2n2+3n).
∴a2=.
又3tSn-(2t+3)Sn-1=3t, ①
3tSn-1-(2t+3)Sn-2=3t ②
①-②得3tan-(2t+3)an-1=0
∴,n=2,3,4…,
所以{an}是一个首项为1公比为的等比数列;
(2)由f(t)= =,得bn=f()=+bn-1.
可见{bn}是一个首项为1,公差为的等差数列.
于是bn=1+(n-1)=;
(3)由bn=,可知
{b2n-1}和{b2n}是首项分别为1和,公差均为的等差数列,
于是b2n=,
∴b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1
=b2(b1-b3)+b4(b3-b5)+…+b2n(b2n-1-b2n+1)
=- (b2+b4+…+b2n)=-·n(+)=- (2n2+3n).
练习册系列答案
相关题目