ÌâÄ¿ÄÚÈÝ
1£®¡¶¾ÅÕÂËãÊõ¡·ÖУ¬½«µ×ÃæΪ³¤·½ÐÎÇÒÓÐÒ»Ìõ²àÀâÓëµ×Ãæ´¹Ö±µÄËÄÀâ׶³Æ֮ΪÑôÂí£¬½«ËĸöÃ涼Ϊֱ½ÇÈý½ÇÐεÄËÄÃæÌå³Æ֮Ϊ±îÄž£®ÔÚÈçͼËùʾµÄÑôÂíP-ABCDÖУ¬²àÀâPD¡Íµ×ÃæABCD£¬ÇÒPD=CD£¬µãEÊÇPCµÄÖе㣬Á¬½ÓDE¡¢BD¡¢BE£®£¨¢ñ£©Ö¤Ã÷£ºDE¡ÍƽÃæPBC£®ÊÔÅжÏËÄÃæÌåEBCDÊÇ·ñΪ±îÄž£®ÈôÊÇ£¬Ð´³öÆäÿ¸öÃæµÄÖ±½Ç£¨Ö»Ðèд³ö½áÂÛ£©£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£»
£¨¢ò£©¼ÇÑôÂíP-ABCDµÄÌå»ýΪV1£¬ËÄÃæÌåEBCDµÄÌå»ýΪV2£¬Çó$\frac{V_1}{V_2}$µÄÖµ£®
·ÖÎö £¨¢ñ£©Ö¤Ã÷BC¡ÍƽÃæPCD£¬DE¡ÍƽÃæPBC£¬¿ÉÖªËÄÃæÌåEBCDµÄËĸöÃ涼ÊÇÖ±½ÇÈý½ÇÐΣ¬¼´¿ÉµÃ³ö½áÂÛ£»
£¨¢ò£©ÓÉÒÑÖª£¬PDÊÇÑôÂíP-ABCDµÄ¸ß£¬ËùÒÔV1=$\frac{1}{3}{S}_{ABCD}•PD$=$\frac{1}{3}BC•CD•PD$£®ÓÉ£¨¢ñ£©Öª£¬DEÊDZîÄžD-BCEµÄ¸ß£¬BC¡ÍCE£¬ËùÒÔV2=$\frac{1}{3}{S}_{¡÷BCE}•DE$=$\frac{1}{6}BC•CE•DE$£®¼´¿ÉÇó$\frac{V_1}{V_2}$µÄÖµ£®
½â´ð £¨¢ñ£©Ö¤Ã÷£ºÒòΪPD¡Íµ×ÃæABCD£¬ËùÒÔPD¡ÍBC£¬
ÒòΪABCDΪÕý·½ÐΣ¬ËùÒÔBC¡ÍCD£¬
ÒòΪPD¡ÉCD=D£¬
ËùÒÔBC¡ÍƽÃæPCD£¬
ÒòΪDE?ƽÃæPCD£¬
ËùÒÔBC¡ÍDE£¬
ÒòΪPD=CD£¬µãEÊÇPCµÄÖе㣬
ËùÒÔDE¡ÍPC£¬
ÒòΪPC¡ÉBC=C£¬
ËùÒÔDE¡ÍƽÃæPBC£¬
ÓÉBC¡ÍƽÃæPCD£¬DE¡ÍƽÃæPBC£¬¿ÉÖªËÄÃæÌåEBCDµÄËĸöÃ涼ÊÇÖ±½ÇÈý½ÇÐΣ¬
¼´ËÄÃæÌåEBCDÊÇÒ»¸ö±îÄž£¬ÆäËĸöÃæµÄÖ±½Ç·Ö±ðÊÇ¡ÏBCD£¬¡ÏBCE£¬¡ÏDEC£¬¡ÏDEB£»
£¨¢ò£©ÓÉÒÑÖª£¬PDÊÇÑôÂíP-ABCDµÄ¸ß£¬ËùÒÔV1=$\frac{1}{3}{S}_{ABCD}•PD$=$\frac{1}{3}BC•CD•PD$£®
ÓÉ£¨¢ñ£©Öª£¬DEÊDZîÄžD-BCEµÄ¸ß£¬BC¡ÍCE£¬
ËùÒÔV2=$\frac{1}{3}{S}_{¡÷BCE}•DE$=$\frac{1}{6}BC•CE•DE$£®
ÒòΪPD=CD£¬µãEÊÇPCµÄÖе㣬
ËùÒÔDE=CE=$\frac{\sqrt{2}}{2}$CD£¬
ËùÒÔ$\frac{{V}_{1}}{{V}_{2}}$=$\frac{\frac{1}{3}BC•CD•PD}{\frac{1}{6}BC•CE•DE}$=$\frac{2CD•PD}{CE•DE}$=4
µãÆÀ ±¾Ì⿼²éÏßÃæ´¹Ö±µÄÅж¨ÓëÐÔÖÊ£¬¿¼²éÌå»ýµÄ¼ÆË㣬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
A£® | -1 | B£® | -2 | C£® | -5 | D£® | 1 |
A£® | $\frac{3}{4}$+$\frac{1}{2¦Ð}$ | B£® | $\frac{1}{2}$+$\frac{1}{¦Ð}$ | C£® | $\frac{1}{2}$-$\frac{1}{¦Ð}$ | D£® | $\frac{1}{4}$-$\frac{1}{2¦Ð}$ |
A£® | xÓëy¸ºÏà¹Ø£¬xÓëz¸ºÏà¹Ø | B£® | xÓëyÕýÏà¹Ø£¬xÓëzÕýÏà¹Ø | ||
C£® | xÓëyÕýÏà¹Ø£¬xÓëz¸ºÏà¹Ø | D£® | xÓëy¸ºÏà¹Ø£¬xÓëzÕýÏà¹Ø |
A£® | £¨-1£¬3£© | B£® | £¨-1£¬0£© | C£® | £¨0£¬2£© | D£® | £¨2£¬3£© |