题目内容
【题目】某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,则每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.
(1)若商店一天购进该商品10件,求当天的利润y(单位:元)关于当天需求量n(单位:件,n∈N)的函数解析式;
(2)商店记录了50天该商品的日需求量(单位:件),整理得表:
日需求量n | 8 | 9 | 10 | 11 | 12 |
频数 | 10 | 10 | 15 | 10 | 5 |
①假设该店在这50天内每天购进10件该商品,求这50天的日利润(单位:元)的平均数;
②若该店一天购进10件该商品,记“当天的利润在区间[400,550]”为事件A,求P(A)的估计值.
【答案】
(1)解:当日需求量n≥10时,利润为y=50×10+(n﹣10)×30=30n+200;
当需求量n<10时,利润y=50×n﹣(10﹣n)×10=60n﹣100.
所以利润y与日需求量n的函数关系式为:y=
(2)解:50天内有10天获得的利润380元,有10天获得的利润为440元,有15天获得利润为500元,有10天获得的利润为530元,有5天获得的利润为560元
① =476
②事件A发生当且仅当日需求量n为9或10或11时.由所给数据知,n=9或10或11的频率为f= =0.7.
故P(A)的估计值为0.7
【解析】(1)根据题意分段求解得出当1≤n≤10时,y利润 , 当n>10时,y利润 , (2)①50天内有9天获得的利润380元,有11天获得的利润为440元,有15天获得利润为500元,有10天获得的利润为530元,有5天获得的利润为560,求其平均数即可.②当天的利润在区间[400,500]有11+15+10天,即可求解概率.
【题目】甲,乙两台机床同时生产一种零件,其质量按测试指标划分:指标大于或等于100为优品,大于等于90且小于100为合格品,小于90为次品,现随机抽取这两台车床生产的零件各100件进行检测,检测结果统计如下:
测试指标 | |||||
机床甲 | 8 | 12 | 40 | 32 | 8 |
机床乙 | 7 | 18 | 40 | 29 | 6 |
(1)试分别估计甲机床、乙机床生产的零件为优品的概率;
(2)甲机床生产一件零件,若是优品可盈利160元,合格品可盈利100元,次品则亏损20元;假设甲机床某天生产50件零件,请估计甲机床该天的日利润(单位:元);
(3)从甲、乙机床生产的零件指标在内的零件中,采用分层抽样的方法抽取5件,从这5件中任选2件进行质量分析,求这2件都是乙机床生产的概率.