题目内容

【题目】已知函数g(x)=ax2﹣2ax+1+b(a>0)在区间[2,3]上有最大值4和最小值1.设f(x)=
(1)求a、b的值;
(2)若不等式f(2x)﹣k2x≥0在x∈[﹣1,1]上恒成立,求实数k的取值范围;
(3)若f(|2x﹣1|)+k ﹣3k=0有三个不同的实数解,求实数k的取值范围.

【答案】
(1)解:函数g(x)=ax2﹣2ax+b+1=a(x﹣1)2+1+b﹣a,

因为a>0,所以g(x)在区间[2,3]上是增函数,

解得


(2)解:由已知可得f(x)=x+ ﹣2,

所以,不等式f(2x)﹣k2x≥0可化为 2x+ ﹣2≥k2x

可化为 1+( 2﹣2 ≥k,令t= ,则 k≤t2﹣2t+1.

因 x∈[﹣1,1],故 t∈[ ,2].故k≤t2﹣2t+1在t∈[ ,2]上恒成立.

记h(t)=t2﹣2t+1,因为 t∈[ ,2],故 h(t)min=h(1)=0,

所以k的取值范围是(﹣∞,0]


(3)解:方程f(|2x﹣1|)+k ﹣3k=0可化为:

|2x﹣1|2﹣(2+3k)|2x﹣1|+(1+2k)=0,|2x﹣1|≠0,

令|2x﹣1|=t,则方程化为

t2﹣(2+3k)t+(1+2k)=0(t≠0),

∵方程f(|2k﹣1|)+k ﹣3k=0有三个不同的实数解,

∴由t=|2x﹣1|的图象知,

t2﹣(2+3k)t+(1+2k)=0(t≠0),有两个根t1、t2

且0<t1<1<t2或0<t1<1,t2=1.

记h(t)=t2﹣(2+3k)t+(1+2k),

,或

∴k>0.


【解析】(1)由函数g(x)=a(x﹣1)2+1+b﹣a,a>0,所以g(x)在区间[2,3]上是增函数,故 ,由此解得a、b的值.(2)不等式可化为 2x+ ﹣2≥k2x , 故有 k≤t2﹣2t+1,t∈[ ,2],求出h(t)=t2﹣2t+1的最小值,从而求得k的取值范围.(3)方程f(|2x﹣1|)+k ﹣3k=0|2x﹣1|2﹣(2+3k)|2x﹣1|+(1+2k)=0,(|2x﹣1|≠0),令|2x﹣1|=t,则t2﹣(2+3k)t+(1+2k)=0(t≠0),构造函数h(t)=t2﹣(2+3k)t+(1+2k),通过数形结合与等价转化的思想即可求得k的范围.
【考点精析】关于本题考查的函数的零点与方程根的关系,需要了解二次函数的零点:(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点;(2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点;(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网