题目内容

已知x、y∈R+,且4x+y=1,求
1
x
+
9
y
的最小值.某同学做如下解答:
因为x、y∈R+,所以1=4x+y≥2
4xy
…①,
1
x
+
9
y
≥2
9
xy
…②,
①×②得
1
x
+
9
y
≥2
4xy
•2
9
xy
=24
,所以
1
x
+
9
y
的最小值为24.
判断该同学解答是否正确,若不正确,请在以下空格内填写正确的最小值;若正确,请在以下空格内填写取得最小值时x、y的值______.
其解答不正确.
因为x、y∈R+,所以1=4x+y≥2
4xy
…①,
1
x
+
9
y
≥2
9
xy
…②,
①×②得
1
x
+
9
y
≥2
4xy
•2
9
xy
=24
,所以
1
x
+
9
y
的最小值为24.
其问题在:①等号成立的充要条件是4x=y=
1
2
;②等号成立的充要条件是y=9x,因此两个等号成立的条件不一样,即不能同时成立,故其最小值不是24.
其正确解答如下:∵x、y∈R+,且4x+y=1,
1
x
+
9
y
=(4x+y)(
1
x
+
9
y
)
=13+
y
x
+
36x
y
≥13+2
y
x
36x
y
=25,当且仅当y=6x=
3
5
时取等号.
因此
1
x
+
9
y
的最小值为25.
故答案为:25.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网