题目内容

已知两条直线l1:y=m和l2:y=
8
2m+1
(m>0),l1与函数y=|log2x|的图象从左至右相交于点A,B,l2与函数y=|log2x|的图象从左至右相交于点C,D.记线段AC和BD在X轴上的投影长度分别为a,b,当m变化时,
b
a
的最小值为(  )
A.16
2
B.8
2
C.8
34
D.4
34
设A,B,C,D各点的横坐标分别为xA,xB,xC,xD
则-log2xA=m,log2xB=m;-log2xC=
8
2m+1
,log2xD=
8
2m+1

∴xA=2-m,xB=2m,xC=2-
8
2m+1
,xD=2
8
2m+1

∴a=|xA-xC|,b=|xB-xD|,
b
a
=
|xB-xD|
|xA-xC|
=|
2m-2
8
2m+1
2-m-2-
8
2m+1
|=2m2
8
2m+1
=2m+
8
2m+1

又m>0,∴m+
8
2m+1
=
1
2
(2m+1)+
8
2m+1
-
1
2
≥2
1
2
×8
-
1
2
=
7
2
(当且仅当m=
3
2
时取“=”)
b
a
2
7
2
=8
2

故选B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网