题目内容
已知正实数a,b满足a+2b=1,则a2+4b2+
的最小值为( )
1 |
ab |
A.
| B.4 | C.
| D.
|
∵已知正实数a,b满足a+2b=1,∴1=a+2b≥2
,当且仅当a=2b时,取等号.解得ab≤
,即ab∈(0,
].
再由 (a+2b)2=a2+4b2+4ab=1,故 a2+4b2+
=1-4ab+
.
把ab当做自变量,则1-4ab+
在(0,
]上是减函数,故当ab=
时,1-4ab+
取得最小值为 1-
+8=
,
故选D.
2ab |
1 |
8 |
1 |
8 |
再由 (a+2b)2=a2+4b2+4ab=1,故 a2+4b2+
1 |
ab |
1 |
ab |
把ab当做自变量,则1-4ab+
1 |
ab |
1 |
8 |
1 |
8 |
1 |
ab |
1 |
2 |
17 |
2 |
故选D.
练习册系列答案
相关题目