题目内容
如图,点A、B、C都在函数y=的图像上,它们的横坐标分别是a、a+1、a+2 又A、B、C在x轴上的射影分别是A′、B′、C′,记△AB′C的面积为f(a),△A′BC′的面积为g(a).
(1)求函数f(a)和g(a)的表达式;
(2)比较f(a)与g(a)的大小,并证明你的结论.
(1)求函数f(a)和g(a)的表达式;
(2)比较f(a)与g(a)的大小,并证明你的结论.
(1) f(a) =(),g(a)= (2) f(a)<g(a)
(1)连结AA′、BB′、CC′,
则f(a)=S△AB′C=S梯形AA′C′C-S△AA′B′-S△CC′B
=(A′A+C′C)=(),
g(a)=S△A′BC′=A′C′·B′B=B′B=。
∴f(a)<g(a).
则f(a)=S△AB′C=S梯形AA′C′C-S△AA′B′-S△CC′B
=(A′A+C′C)=(),
g(a)=S△A′BC′=A′C′·B′B=B′B=。
∴f(a)<g(a).
练习册系列答案
相关题目