题目内容

已知f(x)是偶函数而且在(0,+∞)上是减函数,判断f(x)在(-∞,0)上的增减性并加以证明.
函数f(x)在(-∞,0)上是增函数
函数f(x)在(-∞,0)上是增函数,设x1x2<0,因为f(x)是偶函数,所以f(-x1)=f(x1),f(-x2)=f(x2),由假设可知-x1>-x2>0,又已知f(x)在(0,+∞)上是减函数,于是有f(-x1)<f(-x2),即f(x1)<f(x2),由此可知,函数f(x)在(-∞,0)上是增函数. 
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网