题目内容
12.若实数x,y满足不等式组$\left\{\begin{array}{l}x+3y-3≤0\\ x-y+1≥0\\ y≥-1\end{array}\right.$则z=2|x|+y的取值范围是( )A. | [-1,3] | B. | [1,11] | C. | [1,3] | D. | [-1,11] |
分析 先画出满足条件的平面区域,通过讨论x的范围,求出直线的表达式,结合图象从而求出z的范围.
解答 解:画出满足条件的平面区域,如图示:
,
显然x≤0时,直线方程为:y=2x+z,过(0,-1)时,z最小,Z最小值=-1,
x≥0时,直线方程为:y=-2x+z,过(6,-1)时,z最大,Z最大值=11,
故选:D.
点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.
练习册系列答案
相关题目
3.已知函数f(x)=3sin(ωx-$\frac{π}{6}$)(ω>0)和g(x)=2cos(2x+φ)+1的图象的对称轴完全相同,若x∈[0,$\frac{π}{2}$],则f(x)的取值范围是( )
A. | [-3,3] | B. | [-$\frac{3}{2}$,$\frac{3}{2}$] | C. | [-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$] | D. | [-$\frac{3}{2}$,3] |
20.已知f(x)=sin(ωx-$\frac{π}{4}$)(ω>0)的最小正周期为π,把f(x)图象的横坐标都伸长为原来的2倍(纵坐标不变),再沿x轴向右平移$\frac{π}{4}$个单位得到g(x)的图象,若tanα=2,则g(2α+$\frac{π}{2}$)的大小为( )
A. | -$\frac{5}{12}$ | B. | -$\frac{4}{5}$ | C. | $\frac{5}{12}$ | D. | $\frac{4}{5}$ |
17.若实数x,y满足不等式组$\left\{\begin{array}{l}x+3y-3≤0\\ x-y+1≥0\\ y≥-1\end{array}\right.$,则z=2|x|+y的最大值为( )
A. | 13 | B. | 11 | C. | 3 | D. | 1 |
1.已知i为虚数单位,则$|{\frac{2-i}{1+i}}|$=( )
A. | $\frac{{\sqrt{5}}}{2}$ | B. | $\frac{5}{2}$ | C. | $\frac{{\sqrt{17}}}{2}$ | D. | $\frac{{\sqrt{10}}}{2}$ |
2.执行如图所示的程序框图,若将判断框内“S>100”改为关于n的不等式“n≥n0”且要求输出的结果不变,则正整数n0的取值( )
A. | 是4 | B. | 是5 | C. | 是6 | D. | 不唯一 |