ÌâÄ¿ÄÚÈÝ
10£®2015Äê10ÔÂ18ÈÕÇàÔ˻ῪĻ£¬ÎªÁ˸üºÃµÄÓ½ÓÇàÔ˻ᣬ×öºÃÏļ¾½µÎµÄͬʱҪ¼õÉÙÄÜÔ´ËðºÄ£®¸£ÖÝÊк£Ï¿°ÂÌåÖÐÐĵÄÌåÓý¹ÝÍâǽÐèÒª½¨Ôì¸ôÈȲ㣮ÌåÓý¹ÝÒª½¨Ôì¿ÉʹÓÃ30ÄêµÄ¸ôÈȲ㣬ÿÀåÃ׺ñµÄ¸ôÈȲ㽨Ôì³É±¾Îª2ÍòÔª£®¸Ã½¨ÖþÎïÿÄêµÄÄÜÔ´ÏûºÄ·ÑÓÃCÍòÔªÓë¸ôÈȲãºñ¶ÈxcmÂú×ã¹Øϵ£ºC£¨x£©=$\frac{k}{x+5}$£¨0¡Üx¡Ü10£¬kΪ³£Êý£©£¬Èô²»½¨¸ôÈȲ㣬ÿÄêÄÜÔ´ÏûºÄ·ÑÓÃΪ3ÍòÔª£®Éèf£¨x£©Îª¸ôÈȲ㽨Ôì·ÑÓÃÓë30ÄêµÄÄÜÔ´ÏûºÄ·ÑÓÃÖ®ºÍ£®£¨1£©ÇókµÄÖµ¼°f£¨x£©µÄ±í´ïʽ£»
£¨2£©¸ôÈȲãÐÞ½¨¶àºñʱ£¬×Ü·ÑÓÃf£¨x£©´ïµ½×îС£¿²¢Çó×îСֵ£®
·ÖÎö £¨1£©Óɸý¨ÖþÎïÿÄêµÄÄÜÔ´ÏûºÄ·ÑÓÃCÍòÔªÓë¸ôÈȲãºñ¶ÈxcmÂú×ã¹Øϵ£ºC£¨x£©=$\frac{k}{x+5}$£¨0¡Üx¡Ü10£¬kΪ³£Êý£©£¬Èô²»½¨¸ôÈȲ㣬ÿÄêÄÜÔ´ÏûºÄ·ÑÓÃΪ3ÍòÔª£®ÎÒÃǿɵÃC£¨0£©=3£¬µÃk=15£¬½ø¶øµÃµ½f£¨x£©µÄ±í´ïʽ£»
£¨2£©ÓÉ£¨1£©ÖÐËùÇóµÄf£¨x£©µÄ±í´ïʽ£¬ÎÒÃÇÀûÓûù±¾²»µÈʽÇó³ö×Ü·ÑÓÃf£¨x£©µÄ×îСֵ£®
½â´ð ½â£º£¨1£©µ±x=0ʱ£¬c=3£¬¡àk=15£¬¡£¨2·Ö£©¡à$C£¨x£©=\frac{15}{x+5}$¡£¨3·Ö£©
¡à$f£¨x£©=2x+\frac{30¡Á15}{x+5}=2x+\frac{450}{x+5}£¨{0¡Üx¡Ü10}£©$¡£¨6·Ö£©£¨¶¨ÒåÓòûд¿Û1·Ö£©
£¨2£©f£¨x£©=2£¨x+5£©+$\frac{450}{x+5}$-10¡Ý50£¬
µ±ÇÒ½öµ±2£¨x+5£©=$\frac{450}{x+5}$£¬¼´x=10ʱ£¬È¡µÈºÅ£¬
¡àx=10ʱf£¨x£©ÓÐ×îСֵΪ50¡£¨11·Ö£©
´ð£º¸ôÈȲãÐÞ½¨10cmºñʱ£¬×Ü·ÑÓÃf£¨x£©´ïµ½×îС£¬×îСֵΪ50ÍòÔª£®¡£¨12·Ö£©
µãÆÀ º¯ÊýµÄʵ¼ÊÓ¦ÓÃÌ⣬ÎÒÃÇÒª¾¹ýÎöÌâ¡ú½¨Ä£¡ú½âÄ£¡ú»¹ÔËĸö¹ý³Ì£¬ÔÚ½¨Ä£Ê±Òª×¢Òâʵ¼ÊÇé¿ö¶Ô×Ô±äÁ¿xÈ¡Öµ·¶Î§µÄÏÞÖÆ£¬½âģʱҲҪʵ¼ÊÎÊÌâʵ¼Ê¿¼ÂÇ£®½«Êµ¼ÊµÄ×î´ó£¨Ð¡£©»¯ÎÊÌ⣬ÀûÓú¯ÊýÄ£ÐÍ£¬×ª»¯ÎªÇóº¯ÊýµÄ×î´ó£¨Ð¡£©ÊÇ×îÓÅ»¯ÎÊÌâÖУ¬×î³£¼ûµÄ˼·֮һ£®
A£® | 2$\sqrt{3}$ | B£® | 4 | C£® | 4$\sqrt{3}$ | D£® | 2 |
A£® | $£¨{-\frac{1}{2}£¬\frac{1}{2}}]$ | B£® | $£¨{-\frac{1}{2}£¬\frac{1}{2}}£©$ | C£® | $£¨{-¡Þ£¬-\frac{1}{2}}£©$ | D£® | $[{\frac{1}{2}£¬+¡Þ}£©$ |
A£® | B⊆A | B£® | A⊆B | C£® | A=B | D£® | A¡ÉB=¦µ |
ÇÒ$\overrightarrow{AB}$•$\overrightarrow{BC}$=$\frac{{¦Ð}^{2}}{8}$-8£®Ôòf£¨x£©µÄ½âÎöʽΪ£¨¡¡¡¡£©
A£® | f£¨x£©=2sin£¨2x+$\frac{¦Ð}{3}$£© | B£® | f£¨x£©=2sin£¨2x+$\frac{¦Ð}{6}$£© | C£® | f£¨x£©=2sin£¨3x+$\frac{¦Ð}{3}$£© | D£® | f£¨x£©=2sin£¨3x+$\frac{¦Ð}{6}$£© |
A£® | $\frac{\sqrt{3}}{3}$ | B£® | 1 | C£® | $\sqrt{3}$ | D£® | $\frac{\sqrt{2}}{2}$ |