题目内容
【题目】已知函数有三个不同的零点(其中),则的值为( )
A. B. C. D. 1
【答案】D
【解析】
令y=,从而求导y′=以确定函数的单调性及取值范围,再令=t,从而化为t2+(a﹣1)t+1﹣a=0有两个不同的根,从而可得a<﹣3或a>1,讨论求解即可.
令y=,则y′=,
故当x∈(0,e)时,y′>0,y=是增函数,当x∈(e,+∞)时,y′>0,y=是减函数;且=﹣∞,=,=0;
令=t,则可化为t2+(a﹣1)t+1﹣a=0,故结合题意可知,t2+(a﹣1)t+1﹣a=0有两个不同的根,
故△=(a﹣1)2﹣4(1﹣a)>0,故a<﹣3或a>1,不妨设方程的两个根分别为t1,t2,
①若a<﹣3,t1+t2=1﹣a>4,
与t1≤且t2≤相矛盾,故不成立;
②若a>1,则方程的两个根t1,t2一正一负;
不妨设t1<0<t2,结合y=的性质可得,=t1,=t2,=t2,
故(1﹣)2(1﹣)(1﹣)
=(1﹣t1)2(1﹣t2)(1﹣t2)
=(1﹣(t1+t2)+t1t2)2
又∵t1t2=1﹣a,t1+t2=1﹣a,
∴(1﹣)2(1﹣)(1﹣)=1;
故选:D.
【题目】若某产品的直径长与标准值的差的绝对值不超过1mm 时,则视为合格品,否则视为不合格品。在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品。计算这50件不合格品的直径长与标准值的差(单位:mm), 将所得数据分组,得到如下频率分布表:
分组 | 频数 | 频率 |
[-3, -2) |
| 0.10 |
[-2, -1) | 8 |
|
(1,2] |
| 0.50 |
(2,3] | 10 |
|
(3,4] |
|
|
合计 | 50 | 1.00 |
(Ⅰ)将上面表格中缺少的数据填在答题卡的相应位置;
(Ⅱ)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率;
(Ⅲ)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品。据此估算这批产品中的合格品的件数。