题目内容

【题目】在全球抗击新冠肺炎疫情期间,我国医疗物资生产企业加班加点生产口罩、防护服、消毒水等防疫物品,保障抗疫一线医疗物资供应,在国际社会上贏得一片赞誉.我国某口罩生产厂商在加大生产的同时.狠抓质量管理,不定时抽查口罩质量,该厂质检人员从某日所生产的口罩中随机抽取了100个,将其质量指标值分成以下五组:,得到如下频率分布直方图.

1)规定:口罩的质量指标值越高,说明该口罩质量越好,其中质量指标值低于130的为二级口罩,质量指标值不低于130的为一级口罩.现从样本口罩中利用分层抽样的方法随机抽取8个口罩,再从中抽取3个,记其中一级口罩个数为,求的分布列及数学期望;

2)在2020五一劳动节前,甲,乙两人计划同时在该型号口罩的某网络购物平台上分别参加两店各一个订单秒杀抢购,其中每个订单由个该型号口罩构成.假定甲、乙两人在两店订单秒杀成功的概率分别为,记甲、乙两人抢购成功的订单总数量、口罩总数量分别为

①求的分布列及数学期望

②求当的数学期望取最大值时正整数的值.

【答案】1)见解析,2)①见解析;②6

【解析】

1)根据分层抽样可得二级、一级口罩个数,然后写出的所有可得取值并计算相应的概率,列出分布列并根据数学期望公式可得结果.

2)①写出写出的所有可得取值并计算相应的概率,列出分布列并根据数学期望公式可得结果.②根据,使用换元法并构造函数,然后利用导数判断函数单调性,进一步可得取最大值的条件.

1)按分层抽样抽取8个口罩,则其中二级、一级口罩个数分别为62.故的可能取值为012

的分布列为

0

1

2

所以

2)①由题知的可能取值为012

所以的分布列为

0

1

2

所以

②因为

所以

因为

所以当时,

所以在区间上单调递增;

时,

所以在区间上单调递减;

所以当取最大值,

所以

所以取最大值时,的值为6

练习册系列答案
相关题目

【题目】某校为了解该校学生停课不停学的网络学习效率,随机抽查了高一年级100位学生的某次数学成绩,得到如图所示的频率分布直方图:

1)估计这100位学生的数学成绩的平均值.(同一组中的数据用该组区间的中点值代表);

2)根据整个年级的数学成绩,可以认为学生的数学成绩近似地服从正态分布经计算,(1)问中样本标准差的近似值为10.用样本平均数作为的近似值,用样本标准差作为的估计值,现任抽取一位学生,求他的数学成绩恰在64分到94分之间的概率.

参考数据:若随机变量,则

3)该年级1班的数学老师为了能每天督促学生的网络学习,提高学生每天的作业质量及学习数学的积极性,特意在微信上设计了一个每日作业小程序,每当学生提交的作业获得优秀时,就有机会参与一次小程序中玩游戏,得奖励积分的活动,开学后可根据获得积分的多少领取老师相应的小奖品.小程序页面上有一列方格,共15格,刚开始有只小兔子在第1格,每点一下游戏的开始按钮,小兔子就沿着方格跳一下,每次跳1格或跳2格,概率均为,依次点击游戏的开始按钮,直到小兔子跳到第14格(奖励0分)或第15格(奖励5分)时,游戏结束,每天的积分自动累加,设小兔子跳到第格的概率为,试证明是等比数列,并求的值.(获胜的概率)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网