题目内容
【题目】已知函数.
(1)若函数在处的切线斜率为2,试求a的值及此时的切线方程;
(2)若函数在区间(其中…为自然对数的底数)上有唯一的零点,求实数a的取值范围.
【答案】(1),;(2)或.
【解析】
(1)根据导数的几何意义求解即可;
(2)讨论参数的值,确定函数在区间的单调性,从而根据零点的个数,得出实数a的取值范围.
(1)由,().
由已知.
可得:
又此时.
所以所求的切线方程为:.
即:
(2),其中
①当时,在区间恒成立,在区间单调递增
又∵,∴函数在区间上有唯一的零点,符合题意.
②当时,在区间恒成立,在区间单调递减
又∵,∴函数在区间上有唯一的零点,符合题意.
③当时
(i)时,,单调递减
又∵,,∴函数在区间上有唯一的零点
(ii)当时,,单调递增
∴要使在区间上有唯一的零点,只有当时符合题意
即,即
∴时,函数在区间上有唯一的零点;
∴综上a的取值范围是或.
【题目】近几年,电商行业的蓬勃发展带动了快递业的迅速增长,快递公司揽收价格一般是采用“首重+续重”的计价方式.首重是指最低的计费重量,续重是指超过首重部分的计费重量,不满一公斤按一公斤计费.某快递网点将快件的揽收价格定为首重(不超过一公斤)8元,续重2元/公斤(例如,若一个快件的重量是0.6公斤,按8元计费;若一个快件的重量是1.4公斤,按元元元计费).根据历史数据,得到该网点揽收快件重量的频率分布直方图如下图所示
(1)根据样本估计总体的思想,将频率视作概率,求该网点揽收快件的平均价格;
(2)为了获得更大的利润,该网点对“一天中收发一件快递的平均成本(单位:元)与当天揽收的快递件数(单位:百件)之间的关系”进行调查研究,得到相关数据如下表:
每天揽收快递件数(百件) | 2 | 3 | 4 | 5 | 8 |
每件快递的平均成本(元) | 5.6 | 4.8 | 4.4 | 4.3 | 4.1 |
根据以上数据,技术人员分别根据甲、乙两种不同的回归模型,得到两个回归方程:
方程甲:,方程乙:.
①为了评价两种模型的拟合效果,根据上表数据和相应回归方程,将以下表格填写完整(结果保留一位小数),分别计算模型甲与模型乙的残差平方和,,并依此判断哪个模型的拟合效果更好(备注:称为相应于点的残差,残差平方和;
每天揽收快递件数/百件 | 2 | 3 | 4 | 5 | 8 | |
每天快递的平均成本/元 | 5.6 | 4.8 | 4.4 | 4.3 | 4.1 | |
模型甲 | 预报值 | 5.2 | 5.0 | 4.8 | ||
残差 | 0.2 | 0.4 | ||||
模型乙 | 预报值 | 5.5 | 4.8 | 4.5 | ||
预报值 | 0 | 0.1 |
②预计该网点今年6月25日(端午节)一天可以揽收1000件快递,试根据①中确定的拟合效果较好的回归模型估计该网点当天的总利润(总利润=(平均价格-平均成本)×总件数).