题目内容

【题目】已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴,建立平面直角坐标系,直线过点,倾斜角为

1)求曲线的直角坐标方程与直线l的参数方程;

2)设直线与曲线交于两点,求的值.

【答案】1(为参数);(2.

【解析】

1)将曲线的极坐标方程两边同乘,根据公式即可化简为直角坐标方程;根据已知信息,直接写出直线的参数方程,整理化简即可;

2)联立曲线的直角坐标方程和直线的参数方程,得到关于的一元二次方程,根据直线参数方程中参数的几何意义,求得结果.

(1)因为,所以

所以,即曲线的直角坐标方程为:

直线的参数方程(为参数)

(为参数).

(2)设点对应的参数分别为

将直线的参数方程代入曲线的直角坐标方程,

整理,得

所以

因为

所以=

=4

所以=.

练习册系列答案
相关题目

【题目】近几年,电商行业的蓬勃发展带动了快递业的迅速增长,快递公司揽收价格一般是采用“首重+续重”的计价方式.首重是指最低的计费重量,续重是指超过首重部分的计费重量,不满一公斤按一公斤计费.某快递网点将快件的揽收价格定为首重(不超过一公斤)8元,续重2/公斤(例如,若一个快件的重量是0.6公斤,按8元计费;若一个快件的重量是1.4公斤,按元计费).根据历史数据,得到该网点揽收快件重量的频率分布直方图如下图所示

1)根据样本估计总体的思想,将频率视作概率,求该网点揽收快件的平均价格;

2)为了获得更大的利润,该网点对“一天中收发一件快递的平均成本(单位:元)与当天揽收的快递件数(单位:百件)之间的关系”进行调查研究,得到相关数据如下表:

每天揽收快递件数(百件)

2

3

4

5

8

每件快递的平均成本(元)

5.6

4.8

4.4

4.3

4.1

根据以上数据,技术人员分别根据甲、乙两种不同的回归模型,得到两个回归方程:

方程甲:,方程乙:.

①为了评价两种模型的拟合效果,根据上表数据和相应回归方程,将以下表格填写完整(结果保留一位小数),分别计算模型甲与模型乙的残差平方和,并依此判断哪个模型的拟合效果更好(备注:称为相应于点的残差,残差平方和

每天揽收快递件数/百件

2

3

4

5

8

每天快递的平均成本/

5.6

4.8

4.4

4.3

4.1

模型甲

预报值

5.2

5.0

4.8

残差

0.2

0.4

模型乙

预报值

5.5

4.8

4.5

预报值

0

0.1

②预计该网点今年625日(端午节)一天可以揽收1000件快递,试根据①中确定的拟合效果较好的回归模型估计该网点当天的总利润(总利润=(平均价格-平均成本)×总件数).

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网