题目内容
【题目】在年初的时候,国家政府工作报告明确提出, 年要坚决打好蓝天保卫战,加快解决燃煤污染问题,全面实施散煤综合治理.实施煤改电工程后,某县城的近六个月的月用煤量逐渐减少, 月至月的用煤量如下表所示:
月份 | ||||||
用煤量(千吨) |
(1)由于某些原因, 中一个数据丢失,但根据至月份的数据得出样本平均值是,求出丢失的数据;
(2)请根据至月份的数据,求出关于的线性回归方程;
(3)现在用(2)中得到的线性回归方程中得到的估计数据与月月的实际数据的误差来判断该地区的改造项目是否达到预期,若误差均不超过,则认为该地区的改造已经达到预期,否则认为改造未达预期,请判断该地区的煤改电项目是否达预期?
(参考公式:线性回归方程,其中 )
【答案】(1)4(2)(3)该地区的煤改电项目已经达到预期
【解析】试题分析:(1)根据平均数计算公式得,解得丢失的数据;(2)根据公式求,再根据求;(3)根据线性回归方程求估计数据,并与实际数据比较误差,确定结论.
试题解析:解:(1)设丢失的数据为,则
得,即丢失的数据是.
(2)由数据求得,
由公式求得
所以关于的线性回归方程为
(3)当时, ,
同样,当时, ,
所以,该地区的煤改电项目已经达到预期
【题目】某车间的一台机床生产出一批零件,现从中抽取8件,将其编为, ,…, ,测量其长度(单位: ),得到下表中数据:
编号 | ||||||||
长度 | 1.49 | 1.46 | 1.51 | 1.51 | 1.53 | 1.51 | 1.47 | 1.51 |
其中长度在区间内的零件为一等品.
(1)从上述8个零件中,随机抽取一个,求这个零件为一等品的概率;
(2)从一等品零件中,随机抽取2个.
①用零件的编号列出所有可能的抽取结果;
②求这2个零件长度相等的概率.
【题目】某研究所计划利用“神十”宇宙飞船进行新产品搭载实验,计划搭载若干件新产品A、B,该所要根据该产品的研制成本、产品重量、搭载实验费用和预计产生的收益来决定具体搭载安排,有关数据如表:
每件产品A | 每件产品B | ||
研制成本、搭载 | 20 | 30 | 计划最大资金额 |
产品重量(千克) | 10 | 5 | 最大搭载重量110千克 |
预计收益(万元) | 80 | 60 |
分别用x,y表示搭载新产品A,B的件数.总收益用Z表示
(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(Ⅱ)问分别搭载新产品A、B各多少件,才能使总预计收益达到最大?并求出此最大收益.