题目内容

(本小题满分14分)设函数f (x)满足f (0) =1,且对任意,都有f (xy+1) = f (x) f (y)-f (y)-x+2.(I)      求f (x) 的解析式;(II)  若数列{an}满足:an+1=3f (an)-1(nÎ N*),且a1=1,求数列{an}的通项公式;
(Ⅲ)求数列{an}的前n项和Sn
(Ⅰ)  (Ⅱ) an = 2×3n1-1(Ⅲ)3nn-2
(I) ∵f (0) =1.
x=y=0得f (1) = f (0) f (0)-f (0)-0+2="2                                       "
再令y=0得,                              
所以                                                                          5分
(II) ∵,∴an+1=3f (an)-1= 3an+2,                                             
an+1+1=3(an+1),                                                                                 
a1+1=2,∴数列{an+1} 是公比为3的等比数列                            
an +1= 2×3n1,即an = 2×3n1-1                                                     10分
(III) Sn = a1 + a2 + … + an
=2×(30+31+32+ ×××××× + 3n1)-n
=3nn-2                                                                                           14分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网