题目内容
【题目】甲、乙两位同学参加某个知识答题游戏节目,答题分两轮,第一轮为“选题答题环节”第二轮为“轮流坐庄答题环节”.首先进行第一轮“选题答题环节”,答题规则是:每位同学各自从备选的5道不同题中随机抽出3道题进行答题,答对一题加10分,答错一题(不答视为答错)减5分,已知甲能答对备选5道题中的每道题的概率都是,乙恰能答对备选5道题中的其中3道题;第一轮答题完毕后进行第二轮“轮流坐庄答题环节”,答题规则是:先确定一人坐庄答题,若答对,继续答下一题…,直到答错,则换人(换庄)答下一题…以此类推.例如若甲首先坐庄,则他答第1题,若答对继续答第2题,如果第2题也答对,继续答第3题,直到他答错则换成乙坐庄开始答下一题,…直到乙答错再换成甲坐庄答题,依次类推两人共计答完20道题游戏结束,假设由第一轮答题得分期望高的同学在第二轮环节中最先开始作答,且记第道题也由该同学(最先答题的同学)作答的概率为(),其中,已知供甲乙回答的20道题中,甲,乙两人答对其中每道题的概率都是,如果某位同学有机会答第道题且回答正确则该同学加10分,答错(不答视为答错)则减5分,甲乙答题相互独立;两轮答题完毕总得分高者胜出.回答下列问题
(1)请预测第二轮最先开始作答的是谁?并说明理由
(2)①求第二轮答题中,;
②求证为等比数列,并求()的表达式.
【答案】(1)第二轮最先开始答题的是甲;详见解析(2)①,②证明见解析;()
【解析】
(1)设甲选出的3道题答对的道数为,则,设甲第一轮答题的总得分为,则,,设乙第一轮得分为,求出的分布列,得到,比较两者大小即可得出结论;
(2)①依题意得,,再利用相互独立事件概率乘法公式和互斥事件概率加法公式求出;②,从而,,由此能证明是等比数列,并求出的表达式.
(1)设甲选出的3道题答对的道数为,则,
设甲第一轮答题的总得分为,则,
所以;
(或法二:设甲的第一轮答题的总得分为,则的所有可能取值为30,15,0,-15,
且,
,
,
,
故得分为的分布列为:
30 | 15 | 0 | -15 | |
;)
设乙的第一轮得分为,则的所有可能取值为30,15,0,
则,,,
故的分布列为:
30 | 15 | 0 | |
故,
∵,所以第二轮最先开始答题的是甲.
(2)①依题意知,,,
②依题意有(),
∴,(),
又,
所以是以为首项,为公比的等比数列,
∴,
∴().