题目内容
【题目】选修4—4:坐标系与参数方程
已知曲线的参数方程为(为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)求曲线的直角坐标方程及曲线上的动点到坐标原点的距离的最大值;
(Ⅱ)若曲线与曲线相交于,两点,且与轴相交于点,求的值.
【答案】(1),(2)
【解析】【试题分析】(I)将方程展开后化为直角坐标方程,利用勾股定理求得的长度并求得其最大值.(II)求出直线的参数方程,代入椭圆方程,利用直线参数的几何意义求得的值.
【试题解析】
(Ⅰ)由得,
即曲线的直角坐标方程为
根据题意得,
因此曲线上的动点到原点的距离的最大值为
(Ⅱ)由(Ⅰ)知直线与轴交点的坐标为,曲线的参数方程为:,曲线的直角坐标方程为
联立得……8分
又,
所以
练习册系列答案
相关题目