题目内容
【题目】已知椭圆和圆,、为椭圆的左、右焦点,点在椭圆上,当直线与圆相切时,.
(I)求的方程;
(Ⅱ)直线与椭圆和圆都相切,切点分别为、,求面积的最大值.
【答案】(Ⅰ);(Ⅱ).
【解析】
(I)根据已知条件求得和的值,由此可得出椭圆的方程;
(Ⅱ)将直线的方程与椭圆的方程联立,由可得出,并求出点的坐标,根据圆的切线的性质可得出直线的方程为,与直线的方程联立可求得点的坐标,求得直线与轴的交点的坐标,利用三角形的面积公式以及基本不等式可求得面积的最大值.
(Ⅰ)由题可知.①
设,则由与圆相切时,得,即.②
将①②代入,解得,所以椭圆的方程为;
(Ⅱ)设点、,
将代入得.
由直线与椭圆相切得,即,且,
由直线与圆相切,设,与联立得,
设直线与轴交于点,则.
所以的面积为,
当且仅当时等号成立,
所以的面积的最大值为.
【题目】2016年春节期间全国流行在微信群里发抢红包,现假设某人将688元发成手气红包50个,产生的手气红包频数分布表如下:
金额分组 | ||||||
频 数 | 3 | 9 | 17 | 11 | 8 | 2 |
(1)求产生的手气红包的金额不小于9元的频率;
(2)估计手气红包金额的平均数(同一组中的数据用该组区间的中点值作代表);
(3)在这50个红包组成的样本中,将频率视为概率.
①若红包金额在区间内为最佳运气手,求抢得红包的某人恰好是最佳运气手的概率;
②随机抽取手气红包金额在内的两名幸运者,设其手气金额分别为,,求事件“”的概率.
【题目】对数是简化繁杂运算的产物.16世纪时,为了简化数值计算,数学家希望将乘除法归结为简单的加减法.当时已经有数学家发现这在某些情况下是可以实现的.
比如,利用以下2的次幂的对应表可以方便地算出的值.
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | 4096 |
首先,在第二行找到16与256;然后找出它们在第一行对应的数,即4与8,并求它们的和,即12;最后在第一行中找到12,读出其对应的第二行中的数4096,这就是的值.
用类似的方法可以算出的值,首先,在第二行找到4096与128;然后找出它们在第一行对应的数,即12与7,并求它们的______;最后在第一行中找到______,读出其对应的第二行中的数______,这就是值.