题目内容
【题目】在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)当时,判断直线与曲线的位置关系;
(2)若直线与曲线相交所得的弦长为,求的值.
【答案】(1)相离;(2)或.
【解析】
(1)根据参数方程和极坐标方程与普通方程的关系,进行转化求解即可,利用圆心到直线的距离与半径比较,得出直线与圆的位置关系.
(2)由垂径定理,得出圆心到直线的距离,进而求出直线方程中参数的值.
(1)由
得,
所以曲线的普通方程为.
当时,由,得,
得,得,
代入公式 得,即.
故直线的直角坐标方程为.
因为圆心到直线:的距离为.
所以直线与圆相离.
(2)由,得,
代入公式 得,即.
由垂径定理,得圆心到直线:的距离为.
再由点到直线间的距离公式,得,
解得或.
练习册系列答案
相关题目