题目内容
【题目】已知函数,,函数在点处的切线与函数相切.
(1)求函数的值域;
(2)求证:.
【答案】(1);(2)证明见解析.
【解析】
(1)利用导数求出曲线在点处的切线方程,与函数的解析式联立,由可求得的值,然后利用二次函数的基本性质可求得函数的值域;
(2)要证明,即证,即证,求出函数的最小值,并利用导数求出函数的最大值,由此可得出结论.
(1)切点,,则,.
所以,函数在点处的切线方程为,即.
函数在点处的切线与函数相切.
联立,化为,
,,解得.
,所以,函数的值域为;
(2)要证,即证,即证.
设,,则函数的定义域为.
,.
当时,,此时,函数单调递增;
当时,,此时,函数单调递减.
所以,函数的最大值为.
所以,,但是函数的最小值和函数的最大值不在同一处取得,
因此,.
练习册系列答案
相关题目
【题目】2016年春节期间全国流行在微信群里发抢红包,现假设某人将688元发成手气红包50个,产生的手气红包频数分布表如下:
金额分组 | ||||||
频 数 | 3 | 9 | 17 | 11 | 8 | 2 |
(1)求产生的手气红包的金额不小于9元的频率;
(2)估计手气红包金额的平均数(同一组中的数据用该组区间的中点值作代表);
(3)在这50个红包组成的样本中,将频率视为概率.
①若红包金额在区间内为最佳运气手,求抢得红包的某人恰好是最佳运气手的概率;
②随机抽取手气红包金额在内的两名幸运者,设其手气金额分别为,,求事件“”的概率.