题目内容

【题目】已知﹣1,a1 , a2 , 8成等差数列,﹣1,b1 , b2 , b3 , ﹣4成等比数列,那么 的值为( )
A.﹣5
B.5
C.
D.

【答案】A
【解析】解:∵﹣1,a1 , a2 , 8成等差数列,
∴2a1=﹣1+a2①,2a2=a1+8②,
由②得:a1=2a2﹣8,
代入①得:2(2a2﹣8)=﹣1+a2
解得:a2=5,
∴a1=2a2﹣8=10﹣8=2,
又﹣1,b1 , b2 , b3 , ﹣4成等比数列,
∴b12=﹣b2>0,即b2<0,
∴b22=(﹣1)×(﹣4)=4,
开方得:b2=﹣2,
= =﹣5.
故选A
【考点精析】解答此题的关键在于理解等差数列的性质的相关知识,掌握在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列,以及对等比数列的基本性质的理解,了解{an}为等比数列,则下标成等差数列的对应项成等比数列;{an}既是等差数列又是等比数列== {an}是各项不为零的常数列.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网