题目内容
【题目】已知函数f(x)满足f(x﹣1)=﹣f(﹣x+1),且当x≤0时,f(x)=x3 , 若对任意的x∈[t,t+2],不等式f(x+t)≥2 f(x)恒成立,则实数t的取值范围是 .
【答案】[ ,+∞)
【解析】解:由f(x﹣1)=﹣f(﹣x+1),得f(x0)=﹣f(﹣x﹣1+1)=﹣f(x),
即函数f(x)是奇函数,
若x>0,则﹣x<0,则f(﹣x)=﹣x3=﹣f(x),
即f(x)=x3 , (x>0),
综上f(x)=x3 ,
则不等式f(x+t)≥2 f(x)等价为不等式f(x+t)≥f( x),
∵f(x)=x3 , 为增函数,
∴不等式等价为x+t≥ x在x∈[t,t+2]恒成立,
即:t≥( ﹣1)x,在x∈[t,t+2]恒成立,
即t≥( ﹣1)(t+2),
即(2﹣ )t≥2( ﹣1),
则t≥ = ,
故实数t的取值范围[ ,+∞),
故答案为:[ ,+∞)
根据条件确定函数是奇函数,求出函数f(x)的表达式,并判断函数的单调性,利用函数的单调性将不等式恒成立进行转化,即可求出t的最大值.
练习册系列答案
相关题目
【题目】某品牌连锁便利店有个分店,A,B,C三种商品在各分店均有销售,这三种商品的单价和重量如表1所示:
商品A | 商品B | 商品C | |
单价(元) | 15 | 20 | 30 |
每件重量(千克) | 0.2 | 0.3 | 0.4 |
表1
某日总店向各分店分配的商品A,B,C的数量如表2所示:
商品 分店 | 分店1 | 分店2 | …… | 分店 |
A | 12 | 20 | m1 | |
B | 15 | 20 | m2 | |
C | 20 | 15 | m3 |
表2
表3表示该日分配到各分店去的商品A,B,C的总价和总重量:
分店1 | 分店2 | …… | 分店 | |
总价(元) | ||||
总重量(千克) |
表3
则__________ ; __________ .