题目内容
【题目】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.
(Ⅰ)用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望;
(Ⅱ)设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率.
【答案】(Ⅰ)见解析;(Ⅱ)
【解析】
(Ⅰ)由题意可知分布列为二项分布,结合二项分布的公式求得概率可得分布列,然后利用二项分布的期望公式求解数学期望即可;
(Ⅱ)由题意结合独立事件概率公式计算可得满足题意的概率值.
(Ⅰ)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为,
故,从面.
所以,随机变量的分布列为:
0 | 1 | 2 | 3 | |
随机变量的数学期望.
(Ⅱ)设乙同学上学期间的三天中7:30之前到校的天数为,则.
且.
由题意知事件与互斥,
且事件与,事件与均相互独立,
从而由(Ⅰ)知:
.
练习册系列答案
相关题目
【题目】随着科技的发展,网购已经逐渐融入了人们的生活.在家里面不用出门就可以买到自己想要的东西,在网上付款即可,两三天就会送到自己的家门口,如果近的话当天买当天就能送到,或者第二天就能送到,所以网购是非常方便的购物方式.某公司组织统计了近五年来该公司网购的人数(单位:人)与时间(单位:年)的数据,列表如下:
1 | 2 | 3 | 4 | 5 | |
24 | 27 | 41 | 64 | 79 |
(1)依据表中给出的数据,是否可用线性回归模型拟合与的关系,请计算相关系数并加以说明(计算结果精确到0.01).(若,则线性相关程度很高,可用线性回归模型拟合)
附:相关系数公式 ,参考数据.
(2)建立关于的回归方程,并预测第六年该公司的网购人数(计算结果精确到整数).
(参考公式: ,)