题目内容
【题目】学校游园活动有这样一个游戏:甲箱子里装有3个白球,2个黑球,乙箱子里装有1个白球,2个黑球,这些球除了颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖(每次游戏结束后将球放回原箱).
(1)求在1次游戏中:
①摸出3个白球的概率.
②获奖的概率.
(2)求在3次游戏中获奖次数X的分布列.(用数字作答)
【答案】
(1)解:①设“在1次游戏中摸到i个白球”为事件Ai(i=0,1,2,3),
则P(A3)= = ;
②设“在一次游戏中获奖”为事件B,则B=A2∪A3,
又P(A2)= + = ,且A2、A3互斥,
所以P(B)=P(A2)+P(A3)= + =
(2)解:由题意可知X的所有可能取值为0,1,2,3;
P(X=0)= (1﹣ )3= ,
P(X=1)=C31 = ,
P(X=2)= (1﹣ )= ,
P(X=3)= = ;
所以X的分布列为
X | 0 | 1 | span>2 | 3 |
P |
【解析】(1)①求出基本事件总数,计算摸出3个白球事件数,利用古典概型公式,代入数据得到结果;②获奖包含摸出2个白球和摸出3个白球,且它们互斥,根据①求出摸出2个白球的概率,再相加即可求得结果;(2)确定在3次游戏中获奖次数X的取值是0、1、2、3,求出相应的概率,即可写出分布列.
【考点精析】解答此题的关键在于理解离散型随机变量及其分布列的相关知识,掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.