题目内容

【题目】已知偶函数f(x)的定义域为R,且在(﹣∞,0)上是增函数,则f(﹣ )与f(a2﹣a+1)的大小关系为(
A.f(﹣ )<f(a2﹣a+1)
B.f(﹣ )>f(a2﹣a+1)??
C.f(﹣ )≤f(a2﹣a+1)
D.f(﹣ )≥f(a2﹣a+1)

【答案】D
【解析】解:偶函数f(x)的定义域为R,且在(﹣∞,0)上是增函数, ∴f(x)在[0,+∞]上是减函数.
∵a2﹣a+1=(a﹣ 2+ ,f(x)在[0,+∞]上是减函数,
∴f(a2﹣a+1)≤f( ).
又f(x)是偶函数,∴f(﹣ )=f( ).
∴f(a2﹣a+1)≤f(﹣ ),
故选D.
【考点精析】关于本题考查的奇偶性与单调性的综合,需要了解奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网