题目内容
【题目】如图,在四棱锥中,,,,为等边三角形,且平面平面,为中点.
(1)求证:平面;
(2)求二面角的正弦值.
【答案】(1)证明见解析;(2).
【解析】
(1)可证平面,从而得到要证的线面垂直;
(2)过点作的垂线,交于点,连结,可证二面角的平面角为,利用余弦定理可求其余弦值后可得其正弦值.我们也可以建立如图所示的空间直角坐标系,求出平面的法向量和平面的法向量后可求它们的夹角的余弦值,从而得到二面角的正弦值.
(1)证明:因为,,
所以,
又∵平面平面,且平面平面,平面,
∴平面,又∵平面,∴ 所以,
∵为中点,且为等边三角形,∴,又∵,
∴平面.
(2)【法一】过点作的垂线,交于点,连结,
取中点为,连接.
因为为等边三角形,所以,
由平面平面,平面,平面平面,
所以平面,
平面,所以,由条件知,
又,所以平面,
又平面,所以,
又,所以,
所以,
由二面角的定义知,二面角的平面角为,
在中,,
由,所以,
同理可得,
又,在中,
,
所以,二面角的正弦值为.
【法二】
取中点为,连接,因为为等边三角形,所以,
由平面平面,平面,平面平面,
所以平面,
所以,由,,
可知,所以,
以中点为坐标原点,所在直线为轴,建立如图所示的空间直角坐标系,
所以,,
所以,
由(1)知,可以为平面的法向量,
因为为的中点,
所以,
由(1)知,平面的一个法向量为,
设平面的法向量为,
由得,
取,则,
所以,
所以二面角的正弦值为.
【题目】甲,乙两台机床同时生产一种零件,其质量按测试指标划分:指标大于或等于100为优品,大于等于90且小于100为合格品,小于90为次品,现随机抽取这两台车床生产的零件各100件进行检测,检测结果统计如下:
测试指标 | [85,90) | [90,95) | [95,100) | [100,105) | [105,110) |
机床甲 | 8 | 12 | 40 | 32 | 8 |
机床乙 | 7 | 18 | 40 | 29 | 6 |
(1)试分别估计甲机床、乙机床生产的零件为优品的概率;
(2)甲机床生产一件零件,若是优品可盈利160元,合格品可盈利100元,次品则亏损20元;假设甲机床某天生产50件零件,请估计甲机床该天的日利润(单位:元);
(3)从甲、乙机床生产的零件指标在[90,95)内的零件中,采用分层抽样的方法抽取5件,从这5件中任选2件进行质量分析,求这2件都是乙机床生产的概率.