题目内容
【题目】设函数,.
(1)若函数f(x)在处有极值,求函数f(x)的最大值;
(2)是否存在实数b,使得关于x的不等式在上恒成立?若存在,求出b的取值范围;若不存在,说明理由;
【答案】(1)函数f(x)的最大值为(2)存在,详见解析
【解析】
(1)函数f(x)在处有极值说明
(2)对求导,并判断其单调性。
解:(1)由已知得:,且函数f(x)在处有极值
∴,
∴
∴,
∴
当时,,f(x)单调递增;
当时,,f(x)单调递减;
∴函数f(x)的最大值为.
(2)由已知得:
①若,则时,
∴在上为减函数,
∴在上恒成立;
②若,则时,
∴在[0,+∞)上为增函数,
∴,
不能使在上恒成立;
③若,则时,
,
当时,,
∴在上为增函数,
此时,
∴不能使在上恒成立;
综上所述,b的取值范围是.
练习册系列答案
相关题目