题目内容
【题目】设△ABC的内角A、B、C的对边分别为a、b、c,且满足sinA+sinB=[cosA﹣cos(π﹣B)]sinC.
(1)试判断△ABC的形状,并说明理由;
(2)若a+b+c=1+ ,试求△ABC面积的最大值.
【答案】
(1)解:∵sinA+sinB=[cosA﹣cos(π﹣B)]sinC,
∴sinA+sinB=(cosA+cosB)sinC,
由正弦定理和余弦定理得,
a+b=( + )c,
化简得,2a2b+2ab2=ab2+ac2﹣a3+ba2+bc2﹣b3
a2b+ab2=ac2﹣a3+bc2﹣b3,
(a+b)(a2+b2﹣c2)=0,
又a+b>0,∴a2+b2﹣c2=0,即a2+b2=c2,
∴△ABC为直角三角形,且∠C=90°
(2)解:∵a+b+c=1+ ,a2+b2=c2,
∴1+ =a+b+ ≥2 + =(2+ )
当且仅当a=b时上式等号成立,则 ≤ = ,
∴S△ABC= ab≤ × = ,
即△ABC面积的最大值为
【解析】(1)由诱导公式、正弦定理和余弦定理化简已知的式子,化简后由边的关系判断出三角形的形状;(2)由(1)和条件化简后,由基本不等式化简求出 的范围,表示三角形的面积,即可求出答案.
【考点精析】利用正弦定理的定义和余弦定理的定义对题目进行判断即可得到答案,需要熟知正弦定理:;余弦定理:;;.
【题目】为了调查高中学生喜欢打羽毛球与性别是否有关,调查人员就“是否喜欢打羽毛球”这个问题,分别随机调查了名女生和名男生,根据调查结果得到如图所示的等高条形图:
(1)完成下列列联表:
喜欢打羽毛球 | 不喜欢打羽毛球 | 总计 | |
女生 | |||
男生 | |||
总计 |
(2)能否在犯错误的概率不超过的前提下认为喜欢打羽毛球与性别有关.
参考数表:
参考公式:,其中.
【题目】某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料:
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
温差x(℃) | 10 | 11 | 13 | 12 | 8 |
发芽数y(颗) | 23 | 25 | 30 | 26 | 16 |
(1)请根据3月2日至3月4日的数据,求出y关于x的线性回归方程;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?