题目内容

【题目】设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0 , g(x)为f(x)的导函数.
(Ⅰ)求g(x)的单调区间;
(Ⅱ)设m∈[1,x0)∪(x0 , 2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;
(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且 ∈[1,x0)∪(x0 , 2],满足| ﹣x0|≥

【答案】(Ⅰ)解:由f(x)=2x4+3x3﹣3x2﹣6x+a,可得g(x)=f′(x)=8x3+9x2﹣6x﹣6,
进而可得g′(x)=24x2+18x﹣6.令g′(x)=0,解得x=﹣1,或x=
当x变化时,g′(x),g(x)的变化情况如下表:

x

(﹣∞,﹣1)

(﹣1,

,+∞)

g′(x)

+

+

g(x)

所以,g(x)的单调递增区间是(﹣∞,﹣1),( ,+∞),单调递减区间是(﹣1, ).
(Ⅱ)证明:由h(x)=g(x)(m﹣x0)﹣f(m),得h(m)=g(m)(m﹣x0)﹣f(m),
h(x0)=g(x0)(m﹣x0)﹣f(m).
令函数H1(x)=g(x)(x﹣x0)﹣f(x),则H′1(x)=g′(x)(x﹣x0).
由(Ⅰ)知,当x∈[1,2]时,g′(x)>0,
故当x∈[1,x0)时,H′1(x)<0,H1(x)单调递减;
当x∈(x0 , 2]时,H′1(x)>0,H1(x)单调递增.
因此,当x∈[1,x0)∪(x0 , 2]时,H1(x)>H1(x0)=﹣f(x0)=0,可得H1(m)>0即h(m)>0,
令函数H2(x)=g(x0)(x﹣x0)﹣f(x),则H′2(x)=g′(x0)﹣g(x).由(Ⅰ)知,g(x)在[1,2]上单调递增,故当x∈[1,x0)时,H′2(x)>0,H2(x)单调递增;当x∈(x0 , 2]时,H′2(x)<0,H2(x)单调递减.因此,当x∈[1,x0)∪(x0 , 2]时,H2(x)>H2(x0)=0,可得得H2(m)<0即h(x0)<0,.
所以,h(m)h(x0)<0.
(Ⅲ)对于任意的正整数p,q,且
令m= ,函数h(x)=g(x)(m﹣x0)﹣f(m).
由(Ⅱ)知,当m∈[1,x0)时,h(x)在区间(m,x0)内有零点;
当m∈(x0 , 2]时,h(x)在区间(x0 , m)内有零点.
所以h(x)在(1,2)内至少有一个零点,不妨设为x1 , 则h(x1)=g(x1)( ﹣x0)﹣f( )=0.
由(Ⅰ)知g(x)在[1,2]上单调递增,故0<g(1)<g(x1)<g(2),
于是| ﹣x0|= =
因为当x∈[1,2]时,g(x)>0,故f(x)在[1,2]上单调递增,
所以f(x)在区间[1,2]上除x0外没有其他的零点,而 ≠x0 , 故f( )≠0.
又因为p,q,a均为整数,所以|2p4+3p3q﹣3p2q2﹣6pq3+aq4|是正整数,
从而|2p4+3p3q﹣3p2q2﹣6pq3+aq4|≥1.
所以| ﹣x0|≥ .所以,只要取A=g(2),就有| ﹣x0|≥
【解析】(Ⅰ)求出函数的导函数g(x)=f′(x)=8x3+9x2﹣6x﹣6,求出极值点,通过列表判断函数的单调性求出单调区间即可.
(Ⅱ)由h(x)=g(x)(m﹣x0)﹣f(m),推出h(m)=g(m)(m﹣x0)﹣f(m),
令函数H1(x)=g(x)(x﹣x0)﹣f(x),求出导函数H′1(x)利用(Ⅰ)知,推出h(m)h(x0)<0.
(Ⅲ)对于任意的正整数p,q,且 ,令m= ,函数h(x)=g(x)(m﹣x0)﹣f(m).
由(Ⅱ)知,当m∈[1,x0)时,当m∈(x0 , 2]时,通过h(x)的零点.转化推出| ﹣x0|= = .推出|2p4+3p3q﹣3p2q2﹣6pq3+aq4|≥1.然后推出结果.
【考点精析】掌握利用导数研究函数的单调性和函数的极值与导数是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网