题目内容
9.已知向量$\overrightarrow{OA}=({3,-4}),\overrightarrow{OB}=({6,-3}),\overrightarrow{OC}=({2,-6})$.(Ⅰ)若四边形ABCD为平行四边形,求D点坐标;
(Ⅱ)若$\overrightarrow{OA}=x\overrightarrow{OB}+y\overrightarrow{OC}$,求实数$\frac{y}{x}$的值.
分析 (Ⅰ)设D(m,n),则由四边形ABCD为平行四边形,可得(6-3,-3+4)=(2-m,-6-n),求出m,n,可得D点坐标;
(Ⅱ)利用$\overrightarrow{OA}=x\overrightarrow{OB}+y\overrightarrow{OC}$,可得(3,-4)=x(6,-3)+y(2,-6),所以$\left\{\begin{array}{l}{6x+2y=3}\\{-3x-6y=-4}\end{array}\right.$,求出x,y,即可求实数$\frac{y}{x}$的值.
解答 解:(Ⅰ)设D(m,n),则由四边形ABCD为平行四边形,可得(6-3,-3+4)=(2-m,-6-n),
所以2-m=3,-6-n=1,所以m=-1,n=-7,
所以D(-1,-7);
(Ⅱ)因为$\overrightarrow{OA}=x\overrightarrow{OB}+y\overrightarrow{OC}$,
所以(3,-4)=x(6,-3)+y(2,-6),
所以$\left\{\begin{array}{l}{6x+2y=3}\\{-3x-6y=-4}\end{array}\right.$,
所以x=$\frac{1}{3}$,y=$\frac{1}{2}$,
所以$\frac{y}{x}$=$\frac{3}{2}$.
点评 本题考查向量的线性运算,考查平面向量基本定理,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目
1.点M(6,-2$\sqrt{3}$)的极坐标为( )
A. | (4$\sqrt{3}$,$\frac{π}{6}$) | B. | (4$\sqrt{3}$,$\frac{π}{3}$) | C. | (4$\sqrt{3}$,$\frac{11π}{6}$) | D. | (4$\sqrt{3}$,-$\frac{π}{6}$) |
18.设z=ax+y中变量x、y满足条件$\left\{\begin{array}{l}{x-4y≤-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$,若目标函数z仅在(5,2)处取得最大值,则a的取值范围是( )
A. | (-∞,-$\frac{3}{5}$) | B. | ($\frac{1}{4}$,$\frac{3}{5}$) | C. | ($\frac{1}{4}$,+∞) | D. | ($\frac{3}{5}$,+∞) |
19.已知,P(A)=0.3,P(B|A)=0.4,P(A|B)=0.2,则P(A+B)=( )
(其中P(A+B)=P(A)+P(B)-P(AB))
(其中P(A+B)=P(A)+P(B)-P(AB))
A. | 0.90 | B. | 0.78 | C. | 0.60 | D. | 0.40 |