题目内容
【题目】设向量 =(sinx,﹣1), =( cosx,﹣ ),函数f(x)=( + ) .
(1)求函数f(x)的单调递增区间;
(2)当x∈(0, )时,求函数f(x)的值域.
【答案】
(1)解:∵ =(sinx,﹣1), =( cosx,﹣ ),
∴f(x)=( + ) =(sinx+ cosx,﹣ )(sinx,﹣1)
=sin2x+ sinxcos+ = (1﹣cos2x)+ sin2x+
= sin2x﹣ cos2x)+2
=sin(2x﹣ )+2,
由2kπ﹣ ≤2x﹣ ≤2kπ+ ,
解得:kπ﹣ ≤x≤kπ+ ,
故函数的递增区间是[kπ﹣ ,kπ+ ]
(2)解:∵x∈(0, ),
∴2x﹣ ∈(﹣ , ),
故sin(2x﹣ )的最大值是1,sin(2x﹣ )>sin(﹣ )=﹣ ,
故函数的最大值是3,最小值大于 ,
即函数的值域是( ,3]
【解析】(1)利用向量数量积公式化简函数,结合正弦函数的单调增区间,可得f(x)的单调增区间;(2)求出(2x﹣ )的范围,从而确定f(x)的范围,化简函数,可得函数的值域.
练习册系列答案
相关题目